已知為橢圓的焦點,且直線與橢圓相切.
(Ⅰ)求橢圓方程;
(Ⅱ)過的直線交橢圓于、兩點,求△的面積的最大值,并求此時直線的方程。

(Ⅰ);(Ⅱ),

解析試題分析:(Ⅰ)依題意可設橢圓方程為
代入消去并整理得
,

解得
,.    
(Ⅱ)設過的直線:,代入消去并整理得
,
,     
,
,即時,面積S最大,此時直線方程為
考點:本題考查了橢圓方程的求法及直線與橢圓的位置關系
點評:求解圓錐曲線的方程關鍵是求解a和b,可應用已知條件得到關于兩個參量的方程或由性質直接求得;求解解析幾何問題也要注重對數(shù)學思想的應用,從而使問題求解方法明確、易解

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

橢圓C:=1(a>b>0)的兩個焦點分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個端點,且滿足=0,點N( 0,3 )到橢圓上的點的最遠距離為5
(1)求橢圓C的方程
(2)設斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點A、B,Q為AB的中點,;問A、B兩點能否關于過點P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知點F( 1,0),與直線4x+3y + 1 =0相切,動圓M與及y軸都相切. (I )求點M的軌跡C的方程;(II)過點F任作直線l,交曲線C于A,B兩點,由點A,B分別向各引一條切線,切點 分別為P,Q,記.求證是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線及點,直線的斜率為1且不過點P,與拋物線交于A,B兩點。
(1) 求直線軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點C,D,證明:AD、BC交于定點。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線:的焦點為,、是拋物線上異于坐標原點的不同兩點,拋物線在點處的切線分別為、,且,相交于點.

(1) 求點的縱坐標; 
(2) 證明:、三點共線;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的頂點與雙曲線的焦點重合,它們的離心率之和為,若橢圓的焦點在軸上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點P(4,4),圓C:與橢圓E:有一個公共點A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.

(1)求m的值與橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某海域有、兩個島嶼,島在島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標系。

(1)求曲線的標準方程;(6分)
(2)某日,研究人員在、兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標)?(8分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
如圖,已知橢圓是橢圓的頂點,若橢圓的離心率,且過點.

(Ⅰ)求橢圓的方程;
(Ⅱ)作直線,使得,且與橢圓相交于兩點(異于橢圓的頂點),設直線和直線的傾斜角分別是,求證:.

查看答案和解析>>

同步練習冊答案