設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一個對稱中心的坐標(biāo)為(-,0).

(1)求φ;

(2)作出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;

  (3)試求x∈R時函數(shù)f(x)的最小值,并求相應(yīng)的x的取值集合

解:(1)把(-,0)代入y=sin(2x+φ)得sin(φ-)=0,∴φ-=kπ(k∈Z).∴φ=kπ+ (k∈Z). 又-π<φ<0,∴k=-1時φ=-π.

(2)

(3)f(x)=sin(2x-π),fmin=-1. 當(dāng)sin(2x-π)=-1時,2x-π=2kπ- (k∈Z). ∴{x|x=kπ+,k∈Z}.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•安徽模擬)設(shè)函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)記△ABC的內(nèi)角A、B、C的對邊長分別為a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
,給出以下四個論斷:
①它的圖象關(guān)于直線x=
π
12
對稱;     
②它的圖象關(guān)于點(
π
3
,0)
對稱;
③它的周期是π;                   
④在區(qū)間[0,
π
6
)
上是增函數(shù).
以其中兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出你認(rèn)為正確的命題:
條件
①③
①③
結(jié)論
;(用序號表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的部分圖象如圖所示.
(1)求f(x)的表達式;
(2)若f(x)•f(-x)=
1
4
,x∈(
π
4
,
π
2
)
,求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
3
)
,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinωx+2
3
sin2
ωx
2
(ω>0)的最小正周期為
3

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若將y=f(x)的圖象向左平移
π
2
個單位可得y=g(x)的圖象,求不等式g(x)≥2
3
的解集.

查看答案和解析>>

同步練習(xí)冊答案