15.過(guò)點(diǎn)(1,-3)且垂直于于直線x-2y+3=0的直線方程為( 。
A.x-2y-7=0B.2x+y+1=0C.x-2y+7=0D.2x+y-1=0

分析 設(shè)與直線x-2y+3=0垂直的直線的方程為 2x+y+c=0,把點(diǎn)(1,-3)的坐標(biāo)代入求出c值,即得所求的直線的方程.

解答 解:設(shè)所求的直線方程為2x+y+c=0,把點(diǎn)(1,-3)的坐標(biāo)代入得2-3+c=0,
∴c=1,
故所求的直線的方程為2x+y+1=0,
故選:B.

點(diǎn)評(píng) 本題考查利用待定系數(shù)法求直線的方程,與 ax+by+c=0 垂直的直線的方程為 bx-ay+m=0的形式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)集合A={1,2,3,5,7},B={x|(x-2)(x-5)≤0},則A∩B=(  )
A.{1,2,3}B.{2,3,5}C.{2,3,4,5}D.{1,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知等比數(shù)列{an}滿足a1=4,$a{\;}_2{a_6}={a_4}-\frac{1}{4}$,則a2=( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某研究所設(shè)計(jì)了一款智能機(jī)器人,為了檢驗(yàn)設(shè)計(jì)方案中機(jī)器人動(dòng)作完成情況,現(xiàn)委托某工廠生產(chǎn)500個(gè)機(jī)器人模型,并對(duì)生產(chǎn)的機(jī)器人進(jìn)行編號(hào):001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為50的機(jī)器人樣本,試驗(yàn)小組對(duì)50個(gè)機(jī)器人樣本的動(dòng)作個(gè)數(shù)進(jìn)行分組,頻率分布直方圖及頻率分布表中的部分?jǐn)?shù)據(jù)如圖所示,請(qǐng)據(jù)此回答如下問(wèn)題:
分組機(jī)器人數(shù)頻率
[50,60)0.08
[60,70)10
[70,80)10
[80,90)
[90,100]6
(1)補(bǔ)全頻率分布表,畫(huà)出頻率分布直方圖;
(2)若隨機(jī)抽的第一個(gè)號(hào)碼為003,這500個(gè)機(jī)器人分別放在A,B,C三個(gè)房間,從001到200在A房間,從201到355在B房間,從356到500在C房間,求B房間被抽中的人數(shù)是多少?
(3)從動(dòng)作個(gè)數(shù)不低于80的機(jī)器人中隨機(jī)選取2個(gè)機(jī)器人,該2個(gè)機(jī)器人中動(dòng)作個(gè)數(shù)不低于90的機(jī)器人記為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.《九章算術(shù)》中有這樣一個(gè)問(wèn)題:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?”大意為:有個(gè)圓柱形木頭,埋在墻壁中(如圖所示),不知道其大小,用鋸沿著面AB鋸掉裸露在外面的木頭,鋸口CD深1寸,鋸道AB長(zhǎng)度為1尺,問(wèn)這塊圓柱形木料的直徑是26寸.(注:1尺=10寸)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知四棱柱ABCD-A1B1C1D1的底面是菱形,側(cè)棱AA1⊥底面ABCD,M是AC的中點(diǎn),∠BAD=120°,AA1=AB.
(1)證明:MD1∥平面A1BC1
(2)求直線MA1與平面A1BC1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)O,A,B為平面上三點(diǎn),且點(diǎn)P在直線AB上,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則m+n=(  )
A.0B.-1C.1D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在斜三棱柱ABC-A′B′C′中,AC=BC=A′A=A′C=$\sqrt{2}$,A′在底面ABC上的射影為AB的中點(diǎn)D,E為線段BC的中點(diǎn).
(1)證明:平面A′DE⊥平面BCC′B′;
(2)求三棱錐D-B′BE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.$2(\overrightarrow a-\overrightarrow b)-4(\overrightarrow a+\overrightarrow b)$=-2$\overrightarrow{a}$-6$\overrightarrow$.

查看答案和解析>>

同步練習(xí)冊(cè)答案