已知直線在極坐標(biāo)系中的方程為,圓C在極坐標(biāo)系中的方程為,求圓C被直線截得的弦長(zhǎng).

 

【答案】

【解析】

試題分析:解:直線的直角坐標(biāo)方程為  2分

圓C的直角坐標(biāo)方程為  4分

圓C的圓心為(1,0),半徑r=1……5分

圓心C到直線的距離  7分

圓C被直線截得的弦長(zhǎng)為  10分

考點(diǎn):直線與圓位置關(guān)系的運(yùn)用

點(diǎn)評(píng):主要是考查了直線與圓的位置關(guān)系的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州二模)(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,已知點(diǎn)A(1,
π
2
),點(diǎn)P是曲線ρsin2θ=4cosθ上任意一點(diǎn),設(shè)點(diǎn)P到直線ρcosθ+1=0的距離為d,則丨PA丨+d的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選考題部分
(1)(選修4-4 參數(shù)方程與極坐標(biāo))(本小題滿分7分)
在極坐標(biāo)系中,過(guò)曲線L:ρsin2θ=2acosθ(a>0)外的一點(diǎn)A(2
5
,π+θ)
(其中tanθ=2,θ為銳角)作平行于θ=
π
4
(ρ∈R)
的直線l與曲線分別交于B,C.
(Ⅰ) 寫(xiě)出曲線L和直線l的普通方程(以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建系);
(Ⅱ)若|AB|,|BC|,|AC|成等比數(shù)列,求a的值.
(2)(選修4-5 不等式證明選講)(本小題滿分7分)
已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ) 求證:
a
+
b
+
c
≤3
;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(在給出的二個(gè)題中,任選一題作答.若多選做,則按所做的第A題給分)
(A)(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,直線ρsin(θ-
π
4
)=
2
2
與圓ρ=2cosθ
的位置關(guān)系是
相離
相離

(B)(不等式選講)已知對(duì)于任意非零實(shí)數(shù)m,不等式|5m-3|+|3-4m|≥|m|(x-
2
x
)
恒成立,則實(shí)數(shù)x的取值范圍是
(-∞,-1]∪(0,2]
(-∞,-1]∪(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)=1+
2
,圓C的圓心是C(
2
,
π
4
)
,半徑為
2

(1)求圓C的極坐標(biāo)方程;
(2)求直線l被圓C所截得的弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案