有以下四個(gè)命題:
①函數(shù)y=sin2x和圖象可以由y=sin(2x+
π
4
)
向右平移
π
4
個(gè)單位而得到;
②在△ABC中,若bcosB=ccosC,則△ABC一定是等腰三角形;
③|x|>3是x>4的必要條件;
④已知函數(shù)f(x)=sinx+lnx,則f′(1)的值為1+cos1.寫出所有真命題的序號 ______.
y=sin(2x+
π
4
)
向右平移
π
4
得到y=sin(2(x-
π
4
)+
π
4
)=sin(2x-
π
4
)
,故①錯(cuò)誤;
②由bcosB=ccosC結(jié)合正弦定理可得sinBcosB=sinCcosC,即sin2B=sin2C,所以B=C或B+C=
π
2
,故②錯(cuò)誤,
也可用余弦定理統(tǒng)一成邊找關(guān)系;
③|x|>3?x>3或x<-3,故x>4?|x|>3,反之不成立,命題正確;
f′(x)=cosx+
1
x
,故f′(1)的值為1+cos1正確,
故答案為:③④
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個(gè)命題:
①函數(shù)y=sin2x和圖象可以由y=sin(2x+
π
4
)
向右平移
π
4
個(gè)單位而得到;
②在△ABC中,若bcosB=ccosC,則△ABC一定是等腰三角形;
③|x|>3是x>4的必要條件;
④已知函數(shù)f(x)=sinx+lnx,則f′(1)的值為1+cos1.寫出所有真命題的序號
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省莘縣實(shí)驗(yàn)高中2010屆高三上學(xué)期模擬考試數(shù)學(xué)理科試題 題型:022

有以下四個(gè)命題:

①函數(shù)y=sin2x的圖像可以由y=sin(2x+)向右平移個(gè)單位而得到;

②在△ABC中,若bcosB=ccosC,則△ABC一定是等腰三角形;

③函數(shù)y=log2x+x2-2在(1,2)內(nèi)只有一個(gè)零點(diǎn);

④|x|>3是x>4的必要條件.

其中真命題的序號是________(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年山東省濟(jì)寧一中高三(上)第一次反饋練習(xí)數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

有以下四個(gè)命題:
①函數(shù)y=sin2x和圖象可以由向右平移個(gè)單位而得到;
②在△ABC中,若bcosB=ccosC,則△ABC一定是等腰三角形;
③|x|>3是x>4的必要條件;
④已知函數(shù)f(x)=sinx+lnx,則f′(1)的值為1+cos1.寫出所有真命題的序號    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山東省濟(jì)寧一中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:填空題

有以下四個(gè)命題:
①函數(shù)y=sin2x和圖象可以由向右平移個(gè)單位而得到;
②在△ABC中,若bcosB=ccosC,則△ABC一定是等腰三角形;
③|x|>3是x>4的必要條件;
④已知函數(shù)f(x)=sinx+lnx,則f′(1)的值為1+cos1.寫出所有真命題的序號    

查看答案和解析>>

同步練習(xí)冊答案