已知an是一個(gè)等差數(shù)列,且a2=18,a14=—6.
(1)求an的通項(xiàng)an;
(2)求an的前n項(xiàng)和Sn的最大值并求出此時(shí)n值.
(1)an=22-2n;(2)時(shí),.

試題分析:(1)利用等差數(shù)列通項(xiàng)公式求得,寫出通項(xiàng);(2)求出,利用二次函數(shù)知識(shí)解答,注意數(shù)列中取正整數(shù).
試題解析:(1)由a1+d=18,a1+13d=?6解得:a1=20,d=?2,∴an=22-2n
(2)∵Sn=na1+∴Sn=n•20+•(?2),即 Sn=-n2+21n
∴Sn=?(n?)2+,∴n=10或11,有最大值S10(S11)=110項(xiàng)和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列滿足:,
(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和
(Ⅱ)已知是等差數(shù)列,為前項(xiàng)和,且.求的通項(xiàng)公式,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)于任意的不超過(guò)數(shù)列的項(xiàng)數(shù)),若數(shù)列的前項(xiàng)和等于該數(shù)列的前項(xiàng)之積,則稱該數(shù)列為型數(shù)列。
(1)若數(shù)列是首項(xiàng)型數(shù)列,求的值;
(2)證明:任何項(xiàng)數(shù)不小于3的遞增的正整數(shù)列都不是型數(shù)列;
(3)若數(shù)列型數(shù)列,且試求的遞推關(guān)系,并證明對(duì)恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是正數(shù)組成的數(shù)列,.若點(diǎn)在函數(shù)的導(dǎo)函數(shù)圖像上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是否存在最小的正數(shù),使得對(duì)任意都有成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于數(shù)列,若中最大值,則稱數(shù)列為數(shù)列的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說(shuō)法正確的有___________________.
①遞減數(shù)列 的“凸值數(shù)列”是常數(shù)列;②不存在數(shù)列,它的“凸值數(shù)列”還是本身;③任意數(shù)列的“凸值數(shù)列”是遞增數(shù)列;④“凸值數(shù)列”為1,3,3,9的所有數(shù)列的個(gè)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若,則(   )
A.          B.       C.           D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列{}的前n項(xiàng)和為,且,則使不等式成立的n的最大值為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的前項(xiàng)和為,公差為,已知,,則下列結(jié)論正確的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等比數(shù)列的首項(xiàng)公比,則(     )
A.50B.35C.55D.46

查看答案和解析>>

同步練習(xí)冊(cè)答案