【題目】已知一三棱柱ABC﹣A1B1C1各棱長相等,B1在底面ABC上的射影是AC的中點,則異面直線AA1與BC所成角的余弦值為( )
A.
B.
C.
D.
【答案】B
【解析】解:設(shè)AC的中點為O,連接BO、B1C,易知θ∠B1BC即為直線AA1與BC所成角.
并設(shè)三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長為1,
則BO= ,在Rt△B1BO中,∵ ,可得 .
在R△B1CO中,OC= ,可得
在△BB1C中,由余弦定理,得cosθ= .
故選:B.
【考點精析】利用異面直線及其所成的角對題目進行判斷即可得到答案,需要熟知異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標系中,動點M到定點F(-,0)的距離與它到定直線l:x=-的距離之比為常數(shù).
(1)求動點M的軌跡Γ的方程;
(2)設(shè)點A,若P是(1)中軌跡Γ上的動點,求線段PA的中點B的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx﹣ax2+ax,a為正實數(shù).
(1)當a=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求證:f( )≤0;
(3)若函數(shù)f(x)有且只有1個零點,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn滿足(p﹣1)Sn=p2﹣an(p>0,p≠1),且a3= .
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= ,數(shù)列{bnbn+2}的前n項和為Tn , 若對于任意的正整數(shù)n,都有Tn<m2﹣m+ 成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對城市治安狀況的滿意度,某部門對城市部分居民的“安全感”進行調(diào)查,在調(diào)查過程中讓每個居民客觀地對自己目前生活城市的安全感進行評分,并把所得分作為“安全感指數(shù)”,即用區(qū)間[0,100]內(nèi)的一個數(shù)來表示,該數(shù)越接近100表示安全感越高.現(xiàn)隨機對該地區(qū)的男、女居民各500人進行了調(diào)查,調(diào)查數(shù)據(jù)如表所示:
安全感指數(shù) | [0,20) | [20,40) | [40,60) | [60,80) | [80,100] |
男居民人數(shù) | 8 | 16 | 226 | 131 | 119 |
女居民人數(shù) | 12 | 14 | 174 | 122 | 178 |
根據(jù)表格,解答下面的問題:
(Ⅰ)估算該地區(qū)居民安全感指數(shù)的平均值;
(Ⅱ)如果居民安全感指數(shù)不小于60,則認為其安全感好.為了進一步了解居民的安全感,調(diào)查組又在該地區(qū)隨機抽取3對夫妻進行調(diào)查,用X表示他們之中安全感好的夫妻(夫妻二人都感到安全)的對數(shù),求X的分布列及期望(以樣本的頻率作為總體的概率).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,其左、右焦點分別為,點是坐標平面內(nèi)一點,且, (為坐標原點).
(1)求橢圓的方程;
(2)過點且斜率為的動直線交橢圓于兩點,在軸上是否存在定點,使以為直徑的圓恒過該點?若存在,求出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,△ABC的面積為S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,則cosA= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com