設(shè)P為橢圓上一點(diǎn),且∠PF1F2=30o,∠PF2F1=45o,其中F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),則橢圓的離心率e的值等于(   )

A.                    B.

C.                    D.

 

【答案】

C

【解析】

試題分析:設(shè)|PF1|=x,則|PF2|=2a-x,在三角形PF1F2中,由正弦定理得

由正弦定理得,,,所以,2a-=,解得,=,故選C。

考點(diǎn):本題主要考查橢圓的定義及其幾何性質(zhì),正弦定理的應(yīng)用。

點(diǎn)評(píng):中檔題,涉及橢圓的焦點(diǎn)三角形問(wèn)題,一般要利用橢圓的定義。本題利用橢圓的定義及正弦定理,建立了a,c的方程,求得離心率。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的直線(xiàn)被橢圓截得的弦長(zhǎng)為1,過(guò)點(diǎn)M(3,0)的直線(xiàn)與橢圓C相交于兩點(diǎn)A,B,
(1)求橢圓的方程;
(2)設(shè)P為橢圓上一點(diǎn),且滿(mǎn)足
OA
+
OB
=t
OP
(O為坐標(biāo)原點(diǎn)),當(dāng)|
PA
-
PB
|<
3
時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)x-y+
2
=0相切.
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)M(2,0)的直線(xiàn)與橢圓C相交于兩點(diǎn)A,B,設(shè)P為橢圓上一點(diǎn),且滿(mǎn)足
OA
+
OB
=t
OP
(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•哈爾濱一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的直線(xiàn)被橢圓截得的弦長(zhǎng)為1,過(guò)點(diǎn)M(3,0)的直線(xiàn)與橢圓C相交于兩點(diǎn)A,B
(1)求橢圓C的方程;
(2)設(shè) P為橢圓上一點(diǎn),且滿(mǎn)足
OA
+
OB
=t
OP
(O 為坐標(biāo)原點(diǎn)),當(dāng)|AB|=
3
時(shí),求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂二模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b≥1)
的離心率為
3
2
,且橢圓C上一點(diǎn)N到點(diǎn)Q(0,3)的距離最大值為4,過(guò)點(diǎn)M(3,0)的直線(xiàn)交橢圓C于點(diǎn)A、B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿(mǎn)足
OA
+
OB
=t
OP
(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<
3
時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距為2
3
,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的直線(xiàn)被橢圓截得的弦長(zhǎng)為1,過(guò)點(diǎn)M(3,0)的直線(xiàn)l與橢圓C交于兩點(diǎn)A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿(mǎn)足
OA
+
OB
=t
OP
(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案