A. | 0 | B. | 1 | C. | -1或0 | D. | 0或1 |
分析 聯(lián)立直線與拋物線方程,k2x2+(2k-4)x+1=0,對k分類討論:當(dāng)k=0;當(dāng)k≠0時(shí),由△=0即可得出.
解答 解:直線l:y=kx+1與拋物線y2=4x消去y可得,k2x2+(2k-4)x+1=0,
當(dāng)k=0時(shí),交點(diǎn)為($\frac{1}{4}$,1),滿足題意;
當(dāng)k≠0時(shí),由△=0得k=1,綜上,k=0或1.
故選:D.
點(diǎn)評 本題考查了直線與拋物線的位置關(guān)系轉(zhuǎn)化為方程聯(lián)立,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7π | B. | 14π | C. | 28π | D. | 36π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若K2的觀測值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病 | |
B. | 若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤 | |
C. | 從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說某人吸煙,那么他有99%的可能患有肺病 | |
D. | 以上三種說法都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a)>eaf(0) | B. | f(a)<eaf(0) | C. | f(a)>f(0) | D. | f(a)<f(0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,3] | B. | $[{-\frac{2}{3},3}]$ | C. | $[{-\frac{2}{3},\frac{10}{3}}]$ | D. | $[{-1,\frac{10}{3}}]$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com