【題目】已知函數(shù), (其中).對于不相等的實數(shù),設(shè) .現(xiàn)有如下命題:

(1)對于任意不相等的實數(shù),都有

(2)對于任意的a及任意不相等的實數(shù),都有;

(3)對于任意的a,存在不相等的實數(shù),使得

(4)對于任意的a,存在不相等的實數(shù),使得.

其中的真命題有_____________(寫出所有真命題的序號).

【答案】①④

【解析】 對于①中,由于指數(shù)函數(shù)為單調(diào)遞增函數(shù),所以是成立的,所以是正確的;

對于②中,由于二次函數(shù)的單調(diào)性可知遞減,在上單調(diào)遞增,

所以是不一定成立的,所以是不正確的;

對于③中,由于,可得,即為,

設(shè)

當(dāng)時, ,則單調(diào)遞減,所以不正確。

對于中,由于,可得,即為

設(shè),

對于任意的不恒大于或小于存在不相等的實數(shù) ,使得

所以是正確的,故選①④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (為常數(shù), 為自然對數(shù)的底數(shù)).

(Ⅰ)當(dāng)時,討論函數(shù)在區(qū)間上極值點的個數(shù);

(Ⅱ)當(dāng) 時,對任意的都有成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , 的中點.

1)求證:平面平面

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)= , g(x)是二次函數(shù),若f(g(x))的值域是[0,+∞),則函數(shù)g(x)的值域是( 。
A.(﹣∞,﹣1]∪[1,+∞)
B.(﹣∞,﹣1]∪[0,+∞)
C.[0,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集I=R,集合A={x∈R|},集合B是不等式2|x+1|<4的解集,求A∩(CIB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=kx2+2x(k為實常數(shù))為奇函數(shù),函數(shù)g(x)=af(x)﹣1(a>0且a≠1).
(Ⅰ)求k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最大值;
(Ⅲ)當(dāng)a=時,g(x)≤t2﹣2mt+1對所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為

)求滿足的概率;

)設(shè)三條線段的長分別為5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列五個命題中:
①函數(shù)y=loga(2x﹣1)+2015(a>0且a≠1)的圖象過定點(1,2015);
②若定義域為R函數(shù)f(x)滿足:對任意互不相等的x1、x2都有(x1﹣x2)[f(x1)﹣f(x2)]>0,則f(x)是減函數(shù);
③f(x+1)=x2﹣1,則f(x)=x2﹣2x;
④若函數(shù)f(x)=是奇函數(shù),則實數(shù)a=﹣1;
⑤若a=(c>0,c≠1),則實數(shù)a=3.
其中正確的命題是 .(填上相應(yīng)的序號).

查看答案和解析>>

同步練習(xí)冊答案