a>0,a≠1,函數(shù)f(x)=loga|ax2-x|在[3,4]上是增函數(shù),則a的取值范圍是(  )
分析:對a分a>1與0<a<1,利用復合函數(shù)的單調(diào)性結(jié)合函數(shù)g(x)=|ax2-x|的圖象列出符合條件的不等式組,解之即可.
解答:解:∵a>0,a≠1,令g(x)=|ax2-x|作出其圖象如下:

∵函數(shù)f(x)=loga|ax2-x|在[3,4]上是增函數(shù),
若a>1,則
1
2a
≥4
a>1
1
a
<3
a>1
,解得a>1;
若0<a<1,則
1
2a
≤3
1
a
>4
,解得
1
6
≤a<
1
4
;
故選A.
點評:本題考查對數(shù)函數(shù)圖象與性質(zhì)的綜合應用,利用復合函數(shù)的單調(diào)性結(jié)合函數(shù)g(x)=|ax2-x|的圖象列出符合條件的不等式組是關(guān)鍵,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x),偶函數(shù)g(x)滿足f(x)+g(x)=ax(a>0且a≠1).
(1)求證:f(2x)=2f(x)g(x);
(2)設f(x)的反函數(shù)f-1(x),當a=
2
-1
時,比較f-1[g(x)]與-1的大小,證明你的結(jié)論;
(3)若a>1,n∈N*,且n≥2,比較f(n)與nf(1)的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+k(a>0且a≠1)的圖象過點(-1,1),其反函數(shù)f-1(x)的圖象過點(8,2).(1)求a,k的值
(2)若將y=f-1(x)的圖象向左平移2個單位,再向上平移1個單位,就得到函數(shù)y=g(x)的圖象,寫出y=g(x)的解析式
(3)若函數(shù)F(x)=g(x2)-f-1(x),求F(x)的最小值及取得最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•嘉定區(qū)三模)已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,b=
12
,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知奇函數(shù)f(x),偶函數(shù)g(x)滿足f(x)+g(x)=ax(a>0且a≠1).
(1)求證:f(2x)=2f(x)g(x);
(2)設f(x)的反函數(shù)f-1(x),當a=
2
-1
時,比較f-1[g(x)]與-1的大小,證明你的結(jié)論;
(3)若a>1,n∈N*,且n≥2,比較f(n)與nf(1)的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax+k(a>0且a≠1)的圖象過點(-1,1),其反函數(shù)f-1(x)的圖象過點(8,2).(1)求a,k的值
(2)若將y=f-1(x)的圖象向左平移2個單位,再向上平移1個單位,就得到函數(shù)y=g(x)的圖象,寫出y=g(x)的解析式
(3)若函數(shù)F(x)=g(x2)-f-1(x),求F(x)的最小值及取得最小值時x的值.

查看答案和解析>>

同步練習冊答案