函數(shù)f(x)=ax3-6ax2+3bx+b,其圖象在x=2處的切線方程為3x+y-11=0.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若關于x的方程數(shù)學公式上恰有兩個不等實根,求實數(shù)m的取值范圍;
(Ⅲ)函數(shù)y=f(x)圖象是否存在對稱中心?若存在,求出對稱中以后坐標;若不存在,請說明理由.

解:(Ⅰ)由題意得f(x)=3ax2-12ax+3b,f(2)=-3且f(2)=5

∴a=1,b=3
∴f(x)=x3-6x2+9x+3
(Ⅱ)既考慮方程m=f(x)在區(qū)間[,4]上恰由兩個不等實根的情形
∵f(x)=x3-6x2+9x+3
∴f(x)=3(x-1)(x-3)
令f(x)>0則x<1或x>3而x∈[,4]∴<x<1或3<x<4即f(x)在x∈[,1)和x∈(3,4]上單調遞增
令f(x)<0則1<x<3∴f(x)在x∈(1,3)上單調遞減
∴當x=1時f(x)取得極大值f(1)=7,當x=3時f(x)取得極小值f(3)=3
∵f()=,f(4)=7
∴可作出函數(shù)f(x)在區(qū)間[,4]上的圖象
如圖可知,當方程f(x)-m=0在[,4]上恰由兩個不等實根的情時實數(shù)m的取值范圍是3<m<或m=7
(Ⅲ)存在對稱中心,其坐標為(2,5)
由(Ⅱ)知,f(x)=3(x-1)(x-3)
∴當x<1或x>3時f(x)>0,當1<x<3時f(x)<0故可知函數(shù)f(x)的極值點為A(1,7),B(3,3),線段AB的中點P(2,5)在曲線y=f(x)上,且該曲線關于點P(2,5)成中心對稱,證明如下:
∵f(x)=x3-6x2+9x+3
∴f(4-x)=(4-x)3-6(4-x)2+9(4-x)+3=-x3+6x2-9x+7
∴f(x)+f(4-x)=10
上式表明若點A(x,y)為曲線y=f(x)上任一點,其關于點P(2,5)的對稱點A(4-x,10-y)也在曲線y=f(x)上,則曲線y=f(x)關于點P(2,5)對稱
分析:(Ⅰ)易求切點為(2,5)則f(2)=5①,然后再根據(jù)導數(shù)的幾何意義可得f(2)=-3②根據(jù)①②即可求出a,b的值從而可求出函數(shù)f(x)的解析式.
(Ⅱ)問題即求方程m=f(x)在區(qū)間[,4]上恰由兩個不等實根而解決這類問題常用數(shù)形結合的方法即根據(jù)導數(shù)判斷函數(shù)的單調性作出函數(shù)f(x)的簡圖然后平行移動直線y=m使得其與f(x)有兩個不同的交點所對應的m的范圍即為所求.
(Ⅲ)若函數(shù)y=f(x)圖象存在對稱中心則其極值點也關于此中心對稱,故可先求出函數(shù)f(x)的極值點然后利用中點坐標公式求出的中點即為對稱中心然后在利用對稱的定義證明則曲線y=f(x)關于此點對稱即可.
點評:本題主要考查了導數(shù)的幾何意義,數(shù)形結合思想的應用,以及曲線的對稱中心的求解與證明.解題的關鍵是要理解導數(shù)的幾何意義同時要掌握方程的根的個數(shù)與所對應的函數(shù)的交點的個數(shù)是對應的這個轉化思想!
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有下列命題:
①若f(x)存在導函數(shù),則f′(2x)=[f(2x)]′.
②若函數(shù)h(x)=cos4x-sin4x,則h′(
π12
)=1

③若函數(shù)g(x)=(x-1)(x-2)…(x-2009)(x-2010),則g′(2010)=2009!.
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點”的充要條件.
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

18、已知函數(shù)f(x)=ax3-6ax2+b(x∈[-1,2])的最大值為3,最小值為-29,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f″(x)是函數(shù)y=f(x)的導數(shù)y=f′(x)的導數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;
定義:(2)設x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關于點(x0,f(x0))對稱.
己知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點”A的坐標
 
;
(2)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結論
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ax3-2x2+a2x在x=1處有極小值,則實數(shù)a等于
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下表為函數(shù)f(x)=ax3+cx+d部分自變量取值及其對應函數(shù)值,為了便于研究,相關函數(shù)值取非整數(shù)值時,取值精確到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質:
(1)判斷f(x)的奇偶性,并證明;
(2)判斷f(x)在[0.55,0.6]上是否存在零點,并說明理由.

查看答案和解析>>

同步練習冊答案