6.如圖,菱形ABCD的棱長為2,∠BAD=60°,CP⊥底面ABCD,E為邊AD的中點.
(1)求證:平面PBE⊥平面BCP;
(2)當直線AP與底面ABCD所成的角為30°時,求二面角A-PB-C的余弦值.

分析 (1)根據(jù)面面垂直的判定定理進行證明即可.
(2)建立空間直角坐標系,求出平面的法向量利用向量法即可求二面角A-PC-B的余弦值.

解答 解:(1)連接BD,因為四邊形ABCD 為棱長為2的菱形,∠BAD=60°,
所以△ABD 為等邊三角形,又E 為邊AD 的中點,所以BE⊥AD,
而AD∥BC,故 BE⊥BC;            …2分
因為 CP⊥平面ABCD,BE?平面ABCD,
所以BE⊥PC,BC∩CP=C,故 BE⊥平面BCP,…4分
又BC?平面PBE,所以平面PBE⊥平面BCP.…5分
(2)連接AC,因為CP⊥平面ABCD,所以∠PAC 就是直線AP 與底面ABCD
所成的角,故∠PAC=30°,在 Rt△ACP中,
tan∠PAC=tan30°=$\frac{CP}{AC}=\frac{CP}{2\sqrt{3}}$,可得CP=2,
建立空間直角坐標系C-xyz 如圖,
此時∠BCy=30°,…6分
可得 C(0,0,0),P(0,0,2),B(1,$\sqrt{3}$,0),
A(3,$\sqrt{3}$,0),
$\overrightarrow{CB}$=(1,$\sqrt{3}$,0),$\overrightarrow{CP}$=(0,0,2),$\overrightarrow{BA}$=(2,0,0),
$\overrightarrow{BP}$=(-1,-$\sqrt{3}$,2),…8分
,設$\overrightarrow{n}$=(x,y,z) 為平面PBC 的一個法向量,
則有$\overrightarrow{n}$•$\overrightarrow{CB}$=0,$\overrightarrow{n}$•$\overrightarrow{CP}$=0,
即  $\left\{\begin{array}{l}{x+\sqrt{3}y=0}\\{2z=0}\end{array}\right.$,可得$\overrightarrow{n}$=(-3,$\sqrt{3}$,0),
同理可得平面PAB的一個法向量$\overrightarrow{m}$=(0,2$\sqrt{3}$,3),…10分
cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{3}×2\sqrt{3}}{\sqrt{12}•\sqrt{21}}$=$\frac{\sqrt{7}}{7}$,
∵二面角A-PB-C是鈍二面角,
所以二面角A-PB-C的余弦值為-$\frac{\sqrt{7}}{7}$.…12分

點評 本題主要考查空間面面垂直的判斷以及空間二面角的求解,建立空間坐標系,求出平面的法向量,利用向量法是解決二面角常用的方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=mx-$\frac{m-1}{x}$-lnx,m∈R.函數(shù)g(x)=$\frac{1}{xcosθ}$+lnx在[1,+∞)上為增函數(shù),且0∈[0,$\frac{π}{2}$)
(I)當m=3時,求f(x)在點P(1,f(1))處的切線方程;
(Ⅱ)求θ的取值;
(Ⅲ)若h(x)=f(x)-g(x)在其定義域上為單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.一個三棱錐的三視圖如圖所示,則該三棱錐的體積等于( 。
A.2B.$\frac{4\sqrt{2}}{3}$C.$\frac{4\sqrt{3}}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是一幾何體的三視圖,則該幾何體的表面積為( 。
A.64+24πcm2B.64+36πcm2C.48+36πcm2D.48+24πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.實驗測得四組(x,y)的值為(1,2),(2,3),(3,4),(4,5),則y與x之間的線性回歸方程為(  )
A.y=x+1B.y=x+2C.y=2x+1D.y=x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,點P(0,$\sqrt{3}$)在橢圓上,A,B分別為橢圓的左右頂點,過點B作BD⊥x軸交AP的延長線于點D,F(xiàn)為橢圓的右焦點.
(1)求橢圓的方程及直線PF被橢圓截得的弦長|PM|;
(2)求證:以BD為直徑的圓與直徑PF相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓⊙O交BC于點E,DF是⊙O的切線交BC于點F,且EC=3EF=3.
(Ⅰ)若E為BC的中點,BD=$\frac{7}{2}$,求DE的長;
(Ⅱ)求$\frac{DE}{DC}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.總體(x,y)的一組樣本數(shù)據(jù)為:
x1234
y3354
(1)若x,y線性相關,求回歸直線方程;
(2)當x=6時,估計y的值.
附:回歸直線方程$\hat y$=$\hat b$x+$\hat a$,其中$\hat a$=$\overline{y}$-$\hat b$$\overline{x}$,$\hat b$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{{\sum_{y=1}^{n}x}_{i}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=cos2x在點($\frac{π}{4},\frac{1}{2}}$)處的切線方程為x+y-$\frac{1}{2}$-$\frac{π}{4}$=0.

查看答案和解析>>

同步練習冊答案