(2006•薊縣一模)已知一個平面與正方體的12條棱所成的角都等于θ,則sinθ的值為(  )
分析:棱A1A,A1B1,A1D1與平面AB1D1所成的角相等,所以平面AB1D1就是與正方體的12條棱的夾角均為θ的平面之一.設(shè)出棱長,即可求出sinθ.
解答:解:因為棱A1A,A1B1,A1D1與平面AB1D1所成的角相等,
所以平面AB1D1就是與正方體的12條棱的夾角均為θ的平面.∠A1AO=θ,
設(shè)棱長為:1,A1O=
2
2
,AO=
6
2
,易知sinθ=
2
2
6
2
=
3
3

故選C.
點評:本題是中檔題,考查直線與平面所成角正弦值的求法,考查空間想象能力,計算能力,熟練掌握基本定理、基本方法是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•薊縣一模)已知a,b,a+b成等差數(shù)列,a,b,ab成等比數(shù)列,且0<logm(ab)<1,則m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•薊縣一模)如果向量 
a
=(k,1)
b
=(4,k)
共線且方向相反,則k=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•薊縣一模)tan2010°的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•薊縣一模)函數(shù)f(x)=
2
sin(2x+
π
4
)
,給出下列三個命題:
①函數(shù)f(x)在區(qū)間[
π
2
,
8
]
上是減函數(shù);
②直線x=
π
8
是函數(shù)f(x)的圖象的一條對稱;
③函數(shù)f(x)的圖象可以由函數(shù)y=
2
sin2x的圖象向左平移
π
4
而得到.
其中正確的是( 。

查看答案和解析>>

同步練習冊答案