sin210°+sin250°+sin10°sin50°=________.

答案:
解析:

  答案:

  思路解析:本題可以考慮將正、余弦定理結(jié)合所得到的結(jié)論:

  在△ABC中,

  sin2A=sin2B+sin2C-2sinBsinCcosA,

  而sin210°+sin250°+sin10°sin50°

 。絪in210°+sin250°-2sin10°sin50°×(-)

 。絪in210°+sin250°-2sin10°sin50°×cos120°

 。絪in2120°

  =


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

觀察下面各等式的結(jié)構(gòu)規(guī)律,提出一個猜想
sin2α+sin2(60°-α)+sinα•sin(60°-α)=
3
4
(α取任意角)
sin2α+sin2(60°-α)+sinα•sin(60°-α)=
3
4
(α取任意角)

(1)sin210°+sin250°+sin10°•sin50°=0.75
(2)sin26°+sin254°+sin6°•sin54°=0.75
(3)sin222°+sin238°+sin22°•sin38°=0.75
(4)sin215°+sin245°+sin15°•sin45°=0.75.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察等式
sin210°+sin250°+sin10°sin50°=
3
4
,
sin220°+sin240°+sin20°sin40°=
3
4

sin230°+sin230°+sin30°sin30°=
3
4
,
sin270°+sin2(-10°)+sin70°sin(-10°)=
3
4

(1)總結(jié)上述等式的規(guī)律,寫出具有一般規(guī)律的等式;
(2)證明(1)中的具有一般規(guī)律的等式.
參考公式:sin2a=
1-cos2α
2
,sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ-
+sinαsinβ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|<
π
2
,若cos
π
3
cosφ-sin
3
sinφ=0
,且圖象的一條對稱軸離一個對稱中心的最近距離是
π
4

(1)求函數(shù)f(x)的解析式;
(2)若A,B,C是△ABC的三個內(nèi)角,且f(A)=-1,求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
cos4α
cos2β
+
sin4α
sin2β
=1,求證
cos4β
cos2α
+
sin4β
sin2α
=1

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年浙江省紹興市諸暨市高二(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

觀察等式
sin210°+sin250°+sin10°sin50°=,
sin220°+sin240°+sin20°sin40°=,
sin230°+sin230°+sin30°sin30°=
sin270°+sin2(-10°)+sin70°sin(-10°)=
(1)總結(jié)上述等式的規(guī)律,寫出具有一般規(guī)律的等式;
(2)證明(1)中的具有一般規(guī)律的等式.
參考公式:sin2a=+sinαsinβ.

查看答案和解析>>

同步練習冊答案