(2013•東莞二模)已知實(shí)數(shù),x∈[0,10],執(zhí)行如圖所示的程序框圖,則輸出的x不小于47的概率為
1
2
1
2
分析:由程序框圖的流程,寫出前三項(xiàng)循環(huán)得到的結(jié)果,得到輸出的值與輸入的值的關(guān)系,令輸出值大于等于47得到輸入值的范圍,利用幾何概型的概率公式求出輸出的x不小于47的概率.
解答:解:設(shè)實(shí)數(shù)x∈[0,10],
經(jīng)過第一次循環(huán)得到x=2x+1,n=2
經(jīng)過第二循環(huán)得到x=2(2x+1)+1,n=3
經(jīng)過第三次循環(huán)得到x=2[2(2x+1)+1]+1,n=3此時(shí)輸出x
輸出的值為8x+7
令8x+7≥47得x≥5
由幾何概型得到輸出的x不小于47的概率為P=
10-5
10
=
1
2

故答案為:
1
2
點(diǎn)評(píng):解決程序框圖中的循環(huán)結(jié)構(gòu)時(shí),一般采用先根據(jù)框圖的流程寫出前幾次循環(huán)的結(jié)果,根據(jù)結(jié)果找規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)設(shè)Sn為數(shù)列{an}前n項(xiàng)和,對(duì)任意的n∈N*,都有Sn=2-an,數(shù)列{bn}滿足bn=
bn-1
1+bn-1
,b1=2a1
(1)求證:數(shù)列{an}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)求數(shù)列{
1
an+2bn
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)命題“?x∈R,x2+1≥1”的否定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,D為AC的中點(diǎn),AA1=AB=2.
(1)求證:AB1∥平面BC1D;
(2)若BC=3,求三棱錐D-BC1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)已知x>0,y>0,且
1
x
+
9
y
=1
,則2x+3y的最小值為
29+6
6
29+6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)已知函數(shù)f(x)=tan(
1
3
x-
π
6
)

(1)求f(x)的最小正周期;
(2)求f(
2
)
的值;
(3)設(shè)f(3α+
2
)=-
1
2
,求
sin(π-α)+cos(α-π)
2
sin(α+
π
4
)
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案