【題目】如圖,正三棱柱的每條棱的長度都相等,分別是棱,的中點,是棱上一點,且平面.

1)證明:平面.

2)求直線與平面所成角的正弦值.

【答案】1)見解析(2

【解析】

1)由平面,利用線面平行的性質(zhì)定理可得,又是棱的中點,可得是棱的中點,進而得到四邊形是平行四邊形,,利用線面平行的判定定理即可證得平面

2)以為坐標原點,建立空間直角坐標系.設(shè),求出平面的法向量 ,利用即可得出.

1)證明:平面,平面

平面平面,

,又是棱的中點,

是棱的中點.

的中點,,,

四邊形是平行四邊形.

平面,平面

平面.

2)以為坐標原點,建立如圖所示的空間直角坐標系,設(shè),

,,

,,

設(shè)平面的法向量為,則

,,

,得,

直線與平面所成角的正弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,已知四邊形是菱形,,,,二面角的大小為,的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于給定的數(shù)列,,設(shè),即,…,中的最大值,則稱數(shù)列是數(shù)列的“和諧數(shù)列”.

1)設(shè),,求,的值,并證明數(shù)列是等差數(shù)列;

2)設(shè)數(shù)列都是公比為q的正項等比數(shù)列,若數(shù)列是等差數(shù)列,求公比q的取值范圍;

3)設(shè)數(shù)列滿足,數(shù)列是數(shù)列,的“和諧數(shù)列”,且m為常數(shù),,2,…,k),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.其中,

1)若.求證:.

2)若不等式恒成立,試求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的圖象過點,且相鄰兩個最高點與最低點的距離為

1)求函數(shù)的解析式和單調(diào)增區(qū)間;

2)若將函數(shù)圖象上所有的點向左平移個單位長度,再將所得圖象上所有點的橫坐標變?yōu)樵瓉淼?/span>,得到函數(shù)的圖象,求上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右頂點分別為A,B,離心率為,長軸長為4,動點SC上位于x軸上方,直線與直線,分別交于M,N兩點.

1)求橢圓C的方程

2)求|MN|的最小值

3)當最小時,在橢圓C上是否存在這樣的點T,使△TSB面積為?若存在,請確定點T的個數(shù);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,且a3+2S677,a10a510.

1)求數(shù)列{an}的通項公式;

2)數(shù)列{bn}滿足:b11bnbn1ann+1n≥2),求數(shù)列{}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖.正四面體ABCD的頂點A,BC分別在兩兩垂直的三條射線OX,OY,OZ上,則在下列命題中,錯誤的為(   )

A.OABC是正三棱錐B.二面角DOBA的平面角為

C.直線AD與直線OB所成角為D.直線OD⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點坐標為,一條斜率為的直線分別交軸于點,交橢圓于點,且點三等分

1)求該橢圓的方程;

2)若是第一象限內(nèi)橢圓上的點,其橫坐標為2,過點的兩條不同的直線分別交橢圓于點,且直線的斜率之積,求證:直線恒過定點,并求出定點的坐標.

查看答案和解析>>

同步練習冊答案