12.如圖,在平行四邊形ABCD中,AB=1,AD=2,點E,F(xiàn),G,H分別是AB,BC,CD,DA邊上的中點,則$\overrightarrow{EF}•\overrightarrow{FG}+\overrightarrow{GH}•\overrightarrow{HE}$=( 。
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

分析 將所求利用平行四邊形的相鄰兩邊對應(yīng)向量表示,然后進行向量的運算.

解答 解:在平行四邊形ABCD中,AB=1,AD=2,點E,F(xiàn),G,H分別是AB,BC,CD,DA邊上的中點,則$\overrightarrow{EF}=-\overrightarrow{GH}$,$\overrightarrow{FG}=-\overrightarrow{HE}$,
所以$\overrightarrow{EF}•\overrightarrow{FG}+\overrightarrow{GH}•\overrightarrow{HE}$=2$\overrightarrow{EF}•\overrightarrow{FG}$=$(\overrightarrow{AB}+\overrightarrow{BC})×\frac{1}{2}(\overrightarrow{AD}-\overrightarrow{AB})$=$\frac{1}{2}({\overrightarrow{AD}}^{2}-{\overrightarrow{AB}}^{2})$=$\frac{3}{2}$;
故選:A.

點評 本題考查了平面向量的運算;用到了三角形法則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)證明方程f(x)=g(x)在區(qū)間(1,2)內(nèi)有且僅有唯一實根;
(2)記max{a,b}表示a,b兩個數(shù)中的較大者,方程f(x)=g(x)在區(qū)間(1,2)內(nèi)的實數(shù)根為x0,m(x)=max{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)內(nèi)有兩個不等的實根x1,x2(x1<x2),判斷x1+x2與2x0的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.利用定積分的定義計算下列積分的值:${∫}_{0}^{4}$(2x+3)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.執(zhí)行如圖所示的程序框圖,當(dāng)輸出i的值是4時,輸入的整數(shù)n的最大值是23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)A,B分別是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右頂點,P是雙曲線C上異于A,B的任一點,設(shè)直線AP,BP的斜率分別為m,n,則$\frac{2a}$+ln|m|+ln|n|取得最小值時,雙曲線C的離心率為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(2-$\frac{1}{x}$)(1-2x)4的展開式中x2的系數(shù)為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若數(shù)列{an}是正項數(shù)列,且$\sqrt{a_1}+\sqrt{a_2}+…+\sqrt{a_n}={n^2}+3n$,則$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{a_n}{n+1}$=2n2+6n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若如圖所示的程序框圖輸出的y=2,可輸入的x的值的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}滿足a3=7,a3+a7=26.
(1)求數(shù)列{an}的通項公式;
(2)令${b_n}=\frac{2n}{{{a_n}-8}}$(n∈N*),求數(shù)列{bn}的最大項和最小項.

查看答案和解析>>

同步練習(xí)冊答案