15.已知三棱錐A-BCD中,AB⊥平面ACD,AC=AD=2,AB=4,CD=2$\sqrt{2}$,則三棱錐A-BCD外接球的表面積與內(nèi)切球表面積的比為 ( 。
A.$\frac{5}{2}$B.8C.24D.$\frac{25}{4}$

分析 證明AC⊥AD,AB⊥AC,AB⊥AD,將三棱錐A-BCD擴(kuò)展為長方體,長寬高分別為2,2,4,其對角線為三棱錐A-BCD外接球的直徑,可得三棱錐A-BCD外接球的半徑,利用等體積求出三棱錐A-BCD內(nèi)切球半徑,即可求出三棱錐A-BCD外接球的表面積與內(nèi)切球表面積的比.

解答 解:∵AC=AD=2,CD=2$\sqrt{2}$,
∴AC2+AD2=CD2,
∴AC⊥AD,
∵AB⊥平面ACD,
∴AB⊥AC,AB⊥AD,
將三棱錐A-BCD擴(kuò)展為長方體,長寬高分別為2,2,4,其對角線為$\sqrt{4+4+16}$=2$\sqrt{6}$,
∴三棱錐A-BCD外接球的直徑為2$\sqrt{6}$,半徑為$\sqrt{6}$,
設(shè)三棱錐A-BCD外接球的內(nèi)切球半徑為r,則
$\frac{1}{3}×\frac{1}{2}×2×2×4$=$\frac{1}{3}×(2×\frac{1}{2}×2×4+\frac{1}{2}×2×2+\frac{1}{2}×2\sqrt{2}×\sqrt{20-2})$r,
∴r=$\frac{1}{2}$,
∴三棱錐A-BCD外接球的表面積與內(nèi)切球表面積的比為$(\frac{\sqrt{6}}{\frac{1}{2}})^{2}$=24.
故選:C.

點(diǎn)評(píng) 本題考查三棱錐A-BCD外接球的表面積與內(nèi)切球表面積的比,考查學(xué)生的計(jì)算能力,正確求三棱錐A-BCD外接球與內(nèi)切球的半徑是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知正方形ABCD,E是邊AB的中點(diǎn),將△ADE沿DE折起至A′DE,如圖所示,若A′CD為正三角形,則ED與平面A′DC所成角的余弦值是$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)若關(guān)于x的不等式-$\frac{1}{2}{x^2}$+2x>mx的解集為(0,2),求m的值.
(2)在△ABC中,sinA=$\frac{5}{13}$,cosB=$\frac{3}{5}$,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若實(shí)數(shù)x,y滿足(x-3y)+(2x+3y)i=5+i,則x+y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=2,S7=21.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在等差數(shù)列{an}中,公差為d≠0,a1=2且a5是a3與a8的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{({a}_{n}-1){a}_{n}}$,求數(shù)列{bn}的前2016項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x>0}\\{{x}^{2}+1,x≤0}\end{array}\right.$,若存在x1∈(0,+∞),x2∈(-∞,0],使得f(x1)=f(x2),則x1的最小值為log32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=$\sqrt{2}$,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD的中點(diǎn).
(I)求證:平面PAB⊥平面PAD;
(Ⅱ)求二面角B-PC-D平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(1-x)5•(1+x)3的展開式中x3的系數(shù)為6.

查看答案和解析>>

同步練習(xí)冊答案