A. | $\frac{5}{2}$ | B. | 8 | C. | 24 | D. | $\frac{25}{4}$ |
分析 證明AC⊥AD,AB⊥AC,AB⊥AD,將三棱錐A-BCD擴(kuò)展為長方體,長寬高分別為2,2,4,其對角線為三棱錐A-BCD外接球的直徑,可得三棱錐A-BCD外接球的半徑,利用等體積求出三棱錐A-BCD內(nèi)切球半徑,即可求出三棱錐A-BCD外接球的表面積與內(nèi)切球表面積的比.
解答 解:∵AC=AD=2,CD=2$\sqrt{2}$,
∴AC2+AD2=CD2,
∴AC⊥AD,
∵AB⊥平面ACD,
∴AB⊥AC,AB⊥AD,
將三棱錐A-BCD擴(kuò)展為長方體,長寬高分別為2,2,4,其對角線為$\sqrt{4+4+16}$=2$\sqrt{6}$,
∴三棱錐A-BCD外接球的直徑為2$\sqrt{6}$,半徑為$\sqrt{6}$,
設(shè)三棱錐A-BCD外接球的內(nèi)切球半徑為r,則
$\frac{1}{3}×\frac{1}{2}×2×2×4$=$\frac{1}{3}×(2×\frac{1}{2}×2×4+\frac{1}{2}×2×2+\frac{1}{2}×2\sqrt{2}×\sqrt{20-2})$r,
∴r=$\frac{1}{2}$,
∴三棱錐A-BCD外接球的表面積與內(nèi)切球表面積的比為$(\frac{\sqrt{6}}{\frac{1}{2}})^{2}$=24.
故選:C.
點(diǎn)評(píng) 本題考查三棱錐A-BCD外接球的表面積與內(nèi)切球表面積的比,考查學(xué)生的計(jì)算能力,正確求三棱錐A-BCD外接球與內(nèi)切球的半徑是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com