函數(shù)y=-2sinx+cos2x的最大值是
 
分析:吧函數(shù)解析式中的第二項(xiàng)利用二倍角的余弦函數(shù)公式化簡后,得到y(tǒng)關(guān)于sinx的二次函數(shù),配方后根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出函數(shù)的最大值.
解答:解:y=-2sinx+cos2x
=-2sinx+1-2sin2x
=-2(sin2x+sinx+
1
4
)+
3
2

=-2(sinx+
1
2
2+
3
2

∵sinx∈[-1,1],
∴當(dāng)sinx=-
1
2
時(shí),函數(shù)取得最大值,此時(shí)最大值為
3
2

故答案為:
3
2
點(diǎn)評:此題考查了二倍角的余弦函數(shù)公式,以及二次函數(shù)的性質(zhì),本題的思路為:運(yùn)用二倍角的余弦函數(shù)公式化簡函數(shù)解析式,根據(jù)自變量sinx的范圍,根據(jù)二次函數(shù)的圖象為開口向下的拋物線,頂點(diǎn)為最高點(diǎn),從而求出函數(shù)的最大值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sinx的定義域?yàn)閇a,b],值域?yàn)閇-2,1],則b-a的值不可能是( 。
A、
6
B、π
C、2π
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cosx-sinx的圖象可由函數(shù)y=
2
sinx
的圖象(  )
A、向左
π
4
平移個(gè)長度單位
B、向左
4
平移個(gè)長度單位
C、向右
π
4
平移個(gè)長度單位
D、向右
4
平移個(gè)長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asinωx+Bcosωx(其中A、B、ω是非零常數(shù),且ω>0)的最小正周期為2,且當(dāng)x=
1
3
時(shí),f(x)取得最大值2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)求函數(shù)f(x+
1
6
)的單調(diào)遞增區(qū)間,并指出該函數(shù)的圖象可以由函數(shù)y=2sinx,x∈R的圖象經(jīng)過怎樣的變換得到?
(3)在閉區(qū)間[
21
4
,
23
4
]上是否存在f(x)的對稱軸?如果存在,求出其對稱軸方程;如果不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=2sinx+acosx的值域?yàn)閇-3,3],則a等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sinx-
3
圖象上的一點(diǎn)P的橫坐標(biāo)為
π
3
,則點(diǎn)P處的切線方程為
y=x-
π
3
y=x-
π
3

查看答案和解析>>

同步練習(xí)冊答案