【題目】已知函數(shù),
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)若,,,使得(),求實數(shù)的取值范圍.
【答案】(Ⅰ)見解析(Ⅱ).
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的極值即可;(2)設(shè)在上的值域為A,函數(shù)在上的值域為B,根據(jù)函數(shù)的單調(diào)性求出實數(shù)的取值范圍.
試題解析:
(Ⅰ)依題意, ,
,
因為,故當時, ,當時, ,
故當時, 有極小值,極小值為,無極大值.
(Ⅱ)當時,
因為, ,使得(),
故;設(shè)在上的值域為A,
函數(shù)在上的值域為B,
當時, ,即函數(shù)在上單調(diào)遞減,
故,又.
(i)當時, 在上單調(diào)遞減,此時的值域為,
因為,又,故,即;
(ii)當時, 在上單調(diào)遞增,此時的值域為,因為,又,故,故;
綜上所述,實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,其導(dǎo)函數(shù)為.
(1)設(shè),若函數(shù)在上有且只有一個零點,求的取值范圍;
(2)設(shè),且,點是曲線上的一個定點,是否存在實數(shù),使得成立?證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,該幾何體是由一個直三棱柱和一個正四棱錐組合而成, , .
(Ⅰ)證明:平面平面;
(Ⅱ)求正四棱錐的高,使得二面角的余弦值是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,過且與軸垂直的弦長為3.
(1)求橢圓的標準方程;
(2)過作直線與橢圓交于兩點,問:在軸上是否存在點,使為定值,若存在,請求出點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016·懷仁期中)已知命題:x∈[-1,2],函數(shù)f(x)=x2-x的值大于0.若∨是真命題,則命題可以是( )
A. x∈(-1,1),使得cos x<
B. “-3<m<0”是“函數(shù)f(x)=x+log2x+m在區(qū)間上有零點”的必要不充分條件
C. 直線x=是曲線f(x)=的一條對稱軸
D. 若x∈(0,2),則在曲線f(x)=ex(x-2)上任意一點處的切線的斜率不小于-1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=emx+x2-mx.
(1)證明:f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
(2)若對于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我校為豐富師生課余活動,計劃在一塊直角三角形的空地上修建一個占地面積為(平方米)的矩形健身場地,如圖,點在上,點在上,且點在斜邊上,已知, 米, 米, .設(shè)矩形健身場地每平方米的造價為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價為元(為正常數(shù))
(1)試用表示,并求的取值范圍;
(2)求總造價關(guān)于面積的函數(shù);
(3)如何選取,使總造價最低(不要求求出最低造價)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com