13.如圖,正六邊形ABCDEF中,設(shè)$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow$,則$\overrightarrow{EF}$等于(  )
A.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$B.$\frac{1}{4}$$\overrightarrow$-$\frac{1}{4}$$\overrightarrow{a}$C.$\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$D.$\frac{1}{3}$$\overrightarrow$-$\frac{1}{3}$$\overrightarrow{a}$

分析 根據(jù)平面向量的加法與減法的幾何意義,利用方程組思想,即可求出對應(yīng)的向量.

解答 解:正六邊形ABCDEF中,$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow$,
∴$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$=$\overrightarrow{a}$-$\overrightarrow{AB}$①,
$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$-$\overrightarrow{DB}$=$\overrightarrow{AB}$-$\overrightarrow$②,
且$\overrightarrow{AD}$=2$\overrightarrow{BC}$③;
由①②③組成方程組,解得$\overrightarrow{BC}$=$\frac{1}{3}$($\overrightarrow{a}$-$\overrightarrow$);
∴$\overrightarrow{EF}$=-$\overrightarrow{BC}$=-$\frac{1}{3}$($\overrightarrow{a}$-$\overrightarrow$)=$\frac{1}{3}$$\overrightarrow$-$\frac{1}{3}$$\overrightarrow{a}$.
故選:D.

點評 本題考查了平面向量的線性運算問題,解題時應(yīng)熟知平面向量的三角形合成法則,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知|$\overrightarrow{a}$|=6,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,問當k取何值時,(k$\overrightarrow{a}$+$\overrightarrow$)⊥(3$\overrightarrow{a}$-2$\overrightarrow$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.“a=3”是“直線ax+2y+3a=0與直線3x+(a-1)y=a-7相互垂直”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)y=$\frac{2}{x}$在區(qū)間(0,+∞)上是減函數(shù).(填“增”或“減”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知數(shù)集A={a1,a2,a3,a4,a5}(0≤a1<a2<a3<a4<a5)具有性質(zhì)p:對任意i,j∈Z,其中1≤i≤j≤5,aj+ai與aj-ai兩數(shù)中至少有一個屬于A,若a5=60,則a1=0,a3=30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.《萊因德紙草書》是世界上最古老的數(shù)學著作之一,書中有一道這樣的題目:“把100個面包分給5個人,使每個人所得面包數(shù)成等差數(shù)列,且使最大的三份之和的$\frac{1}{7}$是較小的兩份之和,求最小的一份的量.”此題中,若要使得每個人獲得的面包數(shù)都是整數(shù)個,則題中的面包總數(shù)“100”可以修改為( 。
A.122B.121C.120D.110

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知曲線C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t為參數(shù)),曲線C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),直線C3:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t為參數(shù)).
(1)將C1,C2,C3的方程化為普通方程,并說明它們分別代表什么曲線;
(2)Q為曲線C2上的動點,求Q到直線C3距離的最小值和最大值;
(3)若曲線C1上的點P對應(yīng)的參數(shù)為t=$\frac{π}{2}$,Q為曲線C2上的動點,求PQ中點M到直線C3距離的最小值;
(4)已知點P(x,y)是C1上的動點,求2x+y的取值范圍;
(5)若x+y+a≥0恒成立,(x,y)在曲線C1上,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={x|2x>$\frac{1}{2}$},B={x|lgx>0},則A∩(∁RB)=( 。
A.(1,+∞)B.(0,1]C.(-1,1]D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列命題中真命題是( 。
A.若m⊥α,m?β,則α⊥β
B.若m?α,n?α,m∥β,n∥β,則α∥β
C.若α∩β=m,n∥m,則n∥α且n∥β
D.若m?α,n?α,m,n是異面直線,那么n與α相交

查看答案和解析>>

同步練習冊答案