如圖,在三棱錐P-ABC中,△PAC,△ABC分別是以A、B為直角頂點的等腰直角三角形,AB=1.現(xiàn)給出三個條件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.試從中任意選取一個作為已知條件,并證明:PA⊥平面ABC;
見解析
(解法1)選取條件①,在等腰直角三角形ABC中,∵AB=1,∴BC=1,AC=.
又∵PA=AC,∴PA=.∴在△PAB中,AB=1,PA=.
又∵PB=,∴AB2+PA2=PB2.∴∠PAB=90°,即PA⊥AB.
又∵PA⊥AC,AB∩AC=A,AB,AC真包含于平面ABC,∴PA⊥平面ABC.
(解法2)選取條件②,
∵PB⊥BC,又AB⊥BC,且PB∩AB=B,∴BC⊥平面PAB.
∵PA真包含于平面PAB,∴BC⊥PA.
又∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.
(解法3)選取條件③,
若平面PAB⊥平面ABC,
∵平面PAB∩平面ABC=AB,BC真包含于平面ABC,BC⊥AB,∴BC⊥平面PAB.
∵PA真包含于平面PAB,∴BC⊥PA.∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐SABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點.

(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的條件下,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐PABCD中,PD⊥底面ABCD,AD⊥AB,CD∥AB,AB=AD=2,CD=3,直線PA與底面ABCD所成角為60°,點M、N分別是PA、PB的中點.求證:

(1)MN∥平面PCD;
(2)四邊形MNCD是直角梯形;
(3)DN⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,D是BC的中點.

(1)若E為A1C1的中點,求證:DE∥平面ABB1A1;
(2)若E為A1C1上一點,且A1B∥平面B1DE,求的值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是平面內(nèi)的兩條不同直線,l是平面外的一條直線,則的(     )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列命題:
①若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;
②若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
③若兩條平行直線中的一條垂直于直線m,那么另一條直線也與直線m垂直;
④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.
其中,真命題是________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

a、b、c為三條不重合的直線,α、β、γ為三個不重合平面,現(xiàn)給出六個命題:
 a∥b;② a∥b;③ α∥β;
 α∥β;⑤ α∥a;⑥ a∥α.
其中正確的命題是________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知l,m是兩條不同的直線,α、β是兩個不同的平面,有下列四個命題:
①若lβ,且α⊥β,則l⊥α;
②若l⊥β,且α∥β,則l⊥α;
③若l⊥β,且α⊥β,則l∥α;
④若α∩β=m,且l∥m,則l∥α.
則所有正確的命題是________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間,下列命題正確的是(  )
A.平行直線的平行投影重合
B.平行于同一直線的兩個平面平行
C.垂直于同一平面的兩個平面平行
D.垂直于同一平面的兩條直線平行

查看答案和解析>>

同步練習(xí)冊答案