【題目】已知兩直線l1axby40,l2(a1)xyb0.求分別滿足下列條件的a,b的值.

(1)直線l1過點(3,-1),并且直線l1l2垂直;

(2)直線l1與直線l2平行,并且坐標原點到l1,l2的距離相等.

【答案】1a2,b22

【解析】

(1)∵l1l2,a(a1)(b)·10,即a2ab0. ①

又點(3,-1)l1上,3ab40. ②

①②得,a2,b2.

(2)∵l1l21a,b,故l1l2的方程可分別表示為

(a1)xy0,(a1)xy0,

又原點到l1l2的距離相等,∴4,

a2a,a2,b=-2ab2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為ɑ的正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點.

(1)求直線C與平面ABCD所成角的正弦的值;

(2)求證:平面A B1D1∥平面EFG;

(3)求證:平面AA1C⊥面EFG .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某射手平時射擊成績統(tǒng)計如表:

環(huán)數(shù)

7環(huán)以下

7

8

9

10

概率

a

b

已知他射中7環(huán)及7環(huán)以下的概率為

ab的值;

求命中10環(huán)或9環(huán)的概率;

求命中環(huán)數(shù)不足9環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于 兩點,且.

1求該拋物線的方程;

2過點任意作互相垂直的兩條直線,分別交曲線于點.設(shè)線段的中點分別為,求證:直線恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有10個大小相同的黑球和白球.已知從袋中任意摸出2個球,至少得到1個白球的概率是.

(1)求白球的個數(shù);

(2)從袋中任意摸出3個球,記得到白球的個數(shù)為,求隨機變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 是非零向量,則“ , 共線”是“| |+| |=| + |”的(
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)滿足2x2f(x)+x3f′(x)=ex , f(2)= ,則x∈[2,+∞)時,f(x)(
A.有最大值
B.有最小值
C.有最大值
D.有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}中,a22a5128.

() 求數(shù)列{an}的通項公式;

()bn,且數(shù)列{bn}的前項和為Sn360,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1過點A(0,1),l2過點B(5,0),如果l1l2,且l1與l2的距離為5,求l1、l2的方程.

查看答案和解析>>

同步練習(xí)冊答案