若函數(shù)f(x)=1-2sin2(x+
π
4
)(x∈R),則f(x)是( 。
A、最小正周期為π的偶函數(shù)
B、最小正周期為π的奇函數(shù)
C、最小正周期為
π
2
的偶函數(shù)
D、最小正周期為
π
2
的奇函數(shù)
考點:二倍角的余弦
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用二倍角公式化簡函數(shù)的解析式為f(x)=-sin2x,從而求得函數(shù)的奇偶性和周期性.
解答: 解:∵函數(shù)f(x)=1-2sin2(x+
π
4

=cos(2x+
π
2

=-sin2x(x∈R),
∴f(x)是奇函數(shù),且周期為
2
=π,
故選:B.
點評:本題主要考查二倍角公式的應用,正弦函數(shù)的奇偶性和周期性,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓T:
x2
4
+
y2
3
=1
,A、B為橢圓T的左、右頂點,P為橢圓上異于A、B的任意一點,直線PA、PB交直線x=6于M、N兩點,則線段MN的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={-2,-1,0,1},集合B={x|x2-1≤0,x∈R},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)y=x4+ln3,則y′=( 。
A、4x3
B、4x3+
1
3
C、x4lnx
D、x4lnx+
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)變量x,y滿足
-1≤x+y≤1
-1≤x-y≤1
,則2x+y的最大值和最小值分別為( 。
A、1,-1B、2,-2
C、1,-2D、2,-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x||x+1|<1},B={x|(
1
2
x-2≥0},則A∩∁RB=( 。
A、(-2,-1)
B、(-2,-1]
C、(-1,0)
D、[-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:對于任意角θ,cos4θ-sin4θ=cos2θ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,0),
b
=(2,1).
(1)分別求
a
+
b
,2
a
-3
b
,|
b
|;
(2)當k為何值時,k
a
-
b
a
+3
b
平行,平行時它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ex-ax+a(a∈R),其圖象與x軸交于A(x1,0),B(x2,0)兩點,且x1<x2
(1)求a的取值范圍;
(2)證明:f′(
x1x2
)<0(f′(x)為函數(shù)f(x)的導函數(shù));
(3)設(shè)點C在函數(shù)y=f(x)的圖象上,且△ABC為等腰直角三角形,記
x2-1
x1-1
=t,求(a-1)(t-1)的值.

查看答案和解析>>

同步練習冊答案