設(shè)A、B是x軸上的兩點,點P的橫坐標(biāo)為2,且|PA|=|PB|,若直線PA的方程為x-y+1=0,則直線AB的方程為


  1. A.
    x+y-5=0
  2. B.
    2x-y+1=0
  3. C.
    2y-x-4=0
  4. D.
    2x+y-7=0
A
解析本題考查坐標(biāo)法、直線方程對稱性等基本知識.
解法一:顯然PA過A(-1,0),從而B為(5,0),且PB的斜率為-1,故選A.
解法二:由PA的方程及PA的特征可得P(2,3)、A(-1,0),將P代入檢驗知,排除C,又由PB斜率為-1,排除B、D.
解法三:由圖形可知,PB斜率為-1,直接選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點在原點,焦點F在x軸正半軸上,設(shè)A、B是拋物線C上的兩個動點(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的中垂線恒過定點Q(6,0),求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C:
x2
2
-y2=1
的左、右頂點分別為A1、A2,垂直于x軸的直線a與雙曲線C交于不同的兩點S、T.
(1)求直線A1S與直線A2T的交點H的軌跡E的方程;
(2)設(shè)A,B是曲線E上的兩個動點,線段AB的中垂線與曲線E交于P,Q兩點,直線l:x=
1
2
,線段AB的中點M在直線l上,若F(1,0),求
FP
FQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點在原點,焦點Fx軸正半軸上,設(shè)A、B是拋物線C上的兩個動點(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的垂直平分線恒過定點Q(6,0),求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點在原點,焦點Fx軸正半軸上,設(shè)AB是拋物線C上的兩個動點(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的垂直平分線恒過定點Q(6,0),求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點在原點,焦點F在x軸正半軸上,設(shè)A,B是拋物線C上的兩個動點(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的垂直平分線恒經(jīng)過定點Q(6,0),求此拋物線方程.

查看答案和解析>>

同步練習(xí)冊答案