【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,且兩坐標(biāo)系有相同的長度單位.已知點的極坐標(biāo)為 是曲線 上任意一點,點滿足,設(shè)點的軌跡為曲線.

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)若過點的直線的參數(shù)方程為參數(shù)),且直線與曲線交于, 兩點,求的值.

【答案】(;(

【解析】試題分析:(1)先化點的直角坐標(biāo)為,再由曲線得其半徑為1,最后確定軌跡為圓,圓心為,半徑為1,方程為.(2)直線參數(shù)方程中參數(shù)具有幾何意義,即,因此將直線參數(shù)方程代入圓方程化簡得,結(jié)合韋達定理代入得

試題解析:(1)點的直角坐標(biāo)為,曲線,即,即,

曲線表示以為圓心, 為半徑的圓,方程為

2)將代入方程,得,

,設(shè)兩點對應(yīng)的參數(shù)分別為、

,易知,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的右頂點為,左、右焦點分別為,過點

且斜率為的直線與軸交于點, 與橢圓交于另一個點,且點軸上的射影恰好為點

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點且斜率大于的直線與橢圓交于兩點(),若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱柱中, 為底面的對角線, 的中點.

(1)求證:

(2)求證: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸與極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點且傾斜角為的直線與曲線相交于兩點.

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

(Ⅰ)求的解析式及單調(diào)遞減區(qū)間;

(Ⅱ)若函數(shù)無零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與y軸的正半軸相交于點M,且橢圓E上相異兩點A、B滿足直線MA,MB的斜率之積為

(Ⅰ)證明直線AB恒過定點,并求定點的坐標(biāo);

(Ⅱ)求三角形ABM的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與y軸的正半軸相交于點M,且橢圓E上相異兩點A、B滿足直線MA,MB的斜率之積為

(Ⅰ)證明直線AB恒過定點,并求定點的坐標(biāo);

(Ⅱ)求三角形ABM的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,AB= , BC=AA1=1,點M為AB1的中點,點P為對角線AC1上的動點,點Q為底面ABCD上的動點(點P、Q可以重合),則MP+PQ的最小值為( 。
A.
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為選拔選手參加“中國謎語大會”,某中學(xué)舉行了一次“謎語大賽”活動.為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進行統(tǒng)計.按照 , 的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在 的數(shù)據(jù)).

(Ⅰ)求樣本容量和頻率分布直方圖中的, 的值;

(Ⅱ)分?jǐn)?shù)在的學(xué)生設(shè)為一等獎,獲獎學(xué)金500元;分?jǐn)?shù)在的學(xué)生設(shè)為二等獎,獲獎學(xué)金200元.已知在樣本中,獲一、二等獎的學(xué)生中各有一名男生,則從剩下的女生中任取三人,求獎學(xué)金之和大于600的概率.

查看答案和解析>>

同步練習(xí)冊答案