若△ABC的內(nèi)角A,B,C所對的邊a,b,c滿足(a+b)2-c2=4,且C=60°,則a+b的最小值為( )
A.
B.
C.
D.
【答案】分析:利用余弦定理表示出cosC,將C的度數(shù)代入利用特殊角的三角函數(shù)值化簡,整理后得到一個關系式,將已知的等式利用完全平方公式變形后,將得出的關系式代入求出ab的值,然后將a+b利用基本不等式變形后,將ab的值代入即可求出a+b的最小值.
解答:解:∵C=60°,
∴由余弦定理得cosC==,
即a2+b2-c2=ab,
又(a+b)2-c2=4,即a2+b2+2ab-c2=4,
∴3ab=4,即ab=
∴a+b≥2=,當且僅當a=b時取等號,
則a+b的最小值為
故選D
點評:此題考查了余弦定理,以及基本不等式的運用,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•寧城縣模擬)若△ABC的內(nèi)角A,B,C所對的邊a,b,c滿足(a+b)2-c2=4,且C=60°,則a+b的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的內(nèi)角A、B、C滿足sinA:sinB:sinC=2:3:3,則cosB( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的內(nèi)角A、B、C所對的邊a、b、c滿足(a+b)2-c2=4,且C=60°,則a+b的最小值為
4
3
3
4
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的內(nèi)角A滿足sin2A=-
2
3
,則cosA-sinA=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的內(nèi)角A、B、C滿足6sinA=4sinB=3sinC,則cosB=
 

查看答案和解析>>

同步練習冊答案