(本題滿分16分)已知圓過點且與圓:關(guān)于直線 對稱,作斜率為的直線與圓交于兩點,且點在直線的左上方。
(1)求圓C的方程。
(2)證明:△的內(nèi)切圓的圓心在定直線上。
(3)若∠,求△的面積。
解:(1)設(shè)圓心,則, 解得……………………2分
, ∴圓C的方程為………………………………………4分
(2)設(shè)直線的方程為:,,,
由可得:,
=
=
從而,因此, ∠的平分線為垂直于軸的直線,又,所以△ 的內(nèi)切圓的圓心在直線上!10分
(3)若∠,結(jié)合(2)可知:,……………………11分
直線的方程為:,圓心到直線的距離
…………………………………13分
同理可得:…………………………………………………………15分
………………………………………………16分。
注:(3)解法二: ∥,,又,
,
【解析】略
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省淮安市楚州中學(xué)高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本題滿分16分)
已知函數(shù),且對任意,有.
(1)求;
(2)已知在區(qū)間(0,1)上為單調(diào)函數(shù),求實數(shù)的取值范圍.
(3)討論函數(shù)的零點個數(shù)?(提示:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三10月階段性測試理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)為實常數(shù)).
(I)當時,求函數(shù)在上的最小值;
(Ⅱ)若方程在區(qū)間上有解,求實數(shù)的取值范圍;
(Ⅲ)證明:
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分) 已知橢圓:的離心率為,分別為橢圓的左、右焦點,若橢圓的焦距為2.
⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點,以為圓心,為半徑作圓,當圓與橢圓的右準線有公共點時,求△面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)是定義在上的偶函數(shù),且當時,。
(Ⅰ)求及的值;
(Ⅱ)求函數(shù)在上的解析式;
(Ⅲ)若關(guān)于的方程有四個不同的實數(shù)解,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省2009-2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4 ;求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com