(本題滿分16分)已知圓過點且與圓關(guān)于直線 對稱,作斜率為的直線與圓交于兩點,且點在直線的左上方。

(1)求圓C的方程。

(2)證明:△的內(nèi)切圓的圓心在定直線上。

(3)若∠,求△的面積。

 

【答案】

解:(1)設(shè)圓心,則,  解得……………………2分

,  ∴圓C的方程為………………………………………4分

(2)設(shè)直線的方程為:,,,

可得:,

 =

        =

從而,因此, ∠的平分線為垂直于軸的直線,又,所以△ 的內(nèi)切圓的圓心在直線上!10分

(3)若∠,結(jié)合(2)可知:,……………………11分

直線的方程為:,圓心到直線的距離

    …………………………………13分

同理可得:…………………………………………………………15分

………………………………………………16分。

注:(3)解法二: ,又

,

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省淮安市楚州中學(xué)高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題滿分16分)
已知函數(shù),且對任意,有.
(1)求
(2)已知在區(qū)間(0,1)上為單調(diào)函數(shù),求實數(shù)的取值范圍.
(3)討論函數(shù)的零點個數(shù)?(提示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三10月階段性測試理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分16分)已知函數(shù)為實常數(shù)).

(I)當時,求函數(shù)上的最小值;

(Ⅱ)若方程在區(qū)間上有解,求實數(shù)的取值范圍;

(Ⅲ)證明:

(參考數(shù)據(jù):

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分16分) 已知橢圓的離心率為,分別為橢圓的左、右焦點,若橢圓的焦距為2.

 ⑴求橢圓的方程;

⑵設(shè)為橢圓上任意一點,以為圓心,為半徑作圓,當圓與橢圓的右準線有公共點時,求△面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分16分)已知函數(shù)是定義在上的偶函數(shù),且當時,。

(Ⅰ)求的值;

(Ⅱ)求函數(shù)上的解析式;

(Ⅲ)若關(guān)于的方程有四個不同的實數(shù)解,求實數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省2009-2010學(xué)年高二第二學(xué)期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4 ;求四邊形ABCD的面積.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案