數(shù)列{an}中,若a1=
3
5
,an+1=
3an
2an+1
,則an=
 
;
分析:根據(jù)an+1=
3an
2an+1
,兩邊同時(shí)取倒數(shù),可得到
1
an+1
-1=
1
3
(
1
an
-1)
,即{
1
an
-1
}是以
2
3
為首項(xiàng),以
1
3
為公比的等比數(shù)列,進(jìn)而可得到{
1
an
-1
}的通項(xiàng)公式,即可得到數(shù)列{an}的通項(xiàng)公式.
解答:解:∵an+1=
3an
2an+1
,∴
1
an+1
=
2an+1
3an
=
2
3
+
1
3an

1
an+1
-1=
1
3
(
1
an
-1)

又∵
1
an
-1=
2
3

∴{
1
an
-1
}是以
2
3
為首項(xiàng),以
1
3
為公比的等比數(shù)列
1
an
-1
=
2
3
×
1
3n-1
=
2
3n

∴an=
3n
3n+2
,
故答案為
3n
3n+2
點(diǎn)評(píng):本題主要考查通項(xiàng)公式的求法.構(gòu)造等差或等比數(shù)列是常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,若
a
 
1
=
1
2
,an=
1
1-an-1
(n≥2,n∈N)
,則a2013的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省六校聯(lián)合體2012屆高三11月聯(lián)合考試數(shù)學(xué)文科試題 題型:022

在數(shù)列{an}中,若a-a=p(n≥2,n∈N*,p為常數(shù)),則{an}稱為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的判斷:

①若{an}是等方差數(shù)列,則{a}是等差數(shù)列;

②{(-1)n}是等方差數(shù)列;

③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.

其中正確命題序號(hào)為________.(將所有正確的命題序號(hào)填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南師大附中2012屆高三第二次月考數(shù)學(xué)文科試題 題型:022

在數(shù)列{an}中,若a-a=p(n≥2,n∈N*,p為常數(shù)),則{an}稱為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的判斷:

①若{an}是等方差數(shù)列,則{a}是等差數(shù)列;

②{(-1)n}是等方差數(shù)列;

③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.

其中正確命題序號(hào)為________.(將所有正確的命題序號(hào)填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都市鐵路中學(xué)2012屆高三10月檢測(cè)數(shù)學(xué)試題 題型:022

在數(shù)列{an}中,若a-a=p,(n≥2,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對(duì)“等方差數(shù)列”的判斷:

①若{an}是等方差數(shù)列,則{a}是等差數(shù)列;

②{(-1)n}是等方差數(shù)列;

③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列;

④既是等方差數(shù)列、又是等差數(shù)列的數(shù)列{an}不存在;

其中正確命題序號(hào)為________.(將所有正確的命題序號(hào)填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若a-a=p(n≥2,n∈N,p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對(duì)“等方差數(shù)列”的判斷:

①若{an}是等方差數(shù)列,則{a}是等差數(shù)列;

②{(-1)n}是等方差數(shù)列;

③若{an}是等方差數(shù)列,則{akn}(k∈N,k為常數(shù))也是等方差數(shù)列;

④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)數(shù)列.

其中正確命題的序號(hào)為    .(將所有正確命題的序號(hào)填在橫線上).

查看答案和解析>>

同步練習(xí)冊(cè)答案