【題目】運行如圖所示的程序框圖,則輸出的結(jié)果是(

A.e2016﹣e2015
B.e2017﹣e2016
C.e2015﹣1
D.e2016﹣1

【答案】D
【解析】解:當n=1時,滿足繼續(xù)循環(huán)的條件,S=e﹣1,n=2,
當n=2時,滿足繼續(xù)循環(huán)的條件,S=e2﹣1,n=3,
當n=3時,滿足繼續(xù)循環(huán)的條件,S=e3﹣1,n=4,

當n=k時,滿足繼續(xù)循環(huán)的條件,S=ek﹣1,n=k+1,

當n=2016時,滿足繼續(xù)循環(huán)的條件,S=e2016﹣1,n=2017,
當n=2017時,不滿足繼續(xù)循環(huán)的條件,
故輸出的S值為:e2016﹣1,
故選:D
【考點精析】本題主要考查了程序框圖的相關(guān)知識點,需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:

現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸.在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為3萬元.分別用x,y表示計劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).

(1)用x,y列出滿足生產(chǎn)條件的數(shù)學關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(2)問分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,且a≠1,函數(shù) ,設(shè)函數(shù)f(x)的最大值為M,最小值為N,則(
A.M+N=8
B.M+N=10
C.M﹣N=8
D.M﹣N=10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)是定義在(0,+∞)上單調(diào)函數(shù),且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實數(shù)解所在的區(qū)間是(
A.(0,
B.( ,1)
C.(1,e)
D.(e,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求數(shù)列{an}的通項公式an;
(2)令 ,寫出Tn關(guān)于n的表達式,并求滿足Tn 時n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2 sin cos ﹣2sin2 (ω>0)的最小正周期為3π.
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C所對的邊,a<b<c, a=2csinA,并且f( A+ )= ,求cosB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一個同學家開了一個奶茶店,他為了研究氣溫對熱奶茶銷售杯數(shù)的影響,從一季度中隨機選取5天,統(tǒng)計出氣溫與熱奶茶銷售杯數(shù),如表:

氣溫

0

4

12

19

27

熱奶茶銷售杯數(shù)

150

132

130

104

94

(Ⅰ)求熱奶茶銷售杯數(shù)關(guān)于氣溫的線性回歸方程精確到0.1),若某天的氣溫為,預(yù)測這天熱奶茶的銷售杯數(shù);

(Ⅱ)從表中的5天中任取兩天,求所選取兩天中至少有一天熱奶茶銷售杯數(shù)大于130的概率.

參考數(shù)據(jù):,.

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,得到下表2:

(1)求關(guān)于的線性回歸方程;

(2)通過(1)中的方程,求出關(guān)于的回歸方程;

(3)用所求回歸方程預(yù)測到2010年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線與直線相交于AB兩點.

1)求證:;

2)當的面積等于時,求k的值.

查看答案和解析>>

同步練習冊答案