精英家教網 > 高中數學 > 題目詳情
等比數列{an}中,已知a1=2,a4=16
(1)求數列{an}的通項公式;
(2)若a3,a5分別為等差數列{bn}的第3項和第5項,問a9是不是數列{bn}中的項,如果是求出是第幾項;如果不是說明理由.
【答案】分析:(1)設出等比數列的公比為q,根據a1=2,a4=2•q3=16,求出q,然后寫出等比數列的通項公式即可;
(2)設等差數列{bn}的公差為d,根據b3=a3=8,b5=a5=32求出公差d,根據求出首項b1=b3-2d=8-24=-16,得到bn的通項公式,然后利用(1)求出a9的值,代入bn的通項公式判斷滿足即可知道a9是數列{bn}中的項,然后求出第幾項即可.
解答:解:(1)a1=2,a4=16得2•q3=16q=2
所以an=2•2n-1即an=2n
(2)因為b3=a3=8,b5=a5=32,所以2d=b5-b3=32-8=24,d=12,
由等差數列的性質得b1=b3-2d=8-24=-16,所以bn=12n-28,
因為a9=512,由12n-28=512得n=45
所以a9是數列{bn}中的第45項.
點評:考查學生靈活運用等比數列的通項公式解決數學問題的能力,靈活運用等差數列的性質的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

等比數列{an}中,a2=18,a4=8,則公比q等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求數列{an}的通項公式an
(Ⅱ)設數列{an}的前n項和為Sn,證明:Sn<n-ln(n+1);
(Ⅲ)設bn=an
9
10
n,證明:對任意的正整數n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中數學 來源: 題型:

在等比數列{an}中,a3=2,a7=32,則a5=
8
8

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,an=2×3n-1,則由此數列的奇數項所組成的新數列的前n項和為
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中數學 來源: 題型:

在等比數列{an}中,已知對n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于( 。

查看答案和解析>>

同步練習冊答案