(1)一個(gè)圓與x軸相切,圓心在直線(xiàn)3x-y=0上,且被直線(xiàn)x-y=0所截得的弦長(zhǎng)為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線(xiàn)l:x-2y=0,求與圓C相切,且與直線(xiàn)l垂直的直線(xiàn)方程.
分析:(1)設(shè)出圓的圓心,利用圓心距、半徑、半弦長(zhǎng)滿(mǎn)足勾股定理,求出圓的圓心坐標(biāo)與半徑,即可求解圓的方程.
(2)求出所求直線(xiàn)的斜率,然后利用圓心到直線(xiàn)的距離等于半徑,求解直線(xiàn)的截距,即可求出直線(xiàn)方程即可.
解答:(本小題滿(mǎn)分14分)
解:(1)因?yàn)閳A與x軸相切,圓心在直線(xiàn)3x-y=0上,
所以設(shè)圓的圓心坐標(biāo)(a,3a),半徑為|3a|,
圓被直線(xiàn)x-y=0所截得的弦長(zhǎng)為2
7

所以(
|2a|
2
)2+(
7
)2=9a2
,解得a=±1,
所求圓的方程為:(x-1)2+(y-3)2=9或(x+1)2+(y+3)2=9
(2)因?yàn)榕c直線(xiàn)l:x-2y=0垂直的直線(xiàn)的斜率為:-2,
因?yàn)閳AC:x2+y2=9,與圓C相切的直線(xiàn)為y=-2x+b,
所以
|b|
5
=3
,所以b=±3
5
,
所求直線(xiàn)方程為:y=-2x±3
5
點(diǎn)評(píng):本題考查直線(xiàn)與圓的位置關(guān)系,圓的標(biāo)準(zhǔn)方程的求法,圓的切線(xiàn)方程分求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(>b>0),將圓心在原點(diǎn)O、半徑是
a2+b2
的圓稱(chēng)為橢圓C的“準(zhǔn)圓”.已知橢圓C的方程為
x2
3
+y2=1.
(Ⅰ)過(guò)橢圓C的“準(zhǔn)圓”與y軸正半軸的交點(diǎn)P作直線(xiàn)l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),求l1,l2的方程;
(Ⅱ)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與X軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求
AB
AD
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱(chēng)圓心在原點(diǎn)O、半徑是
a2+b2
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(
2
,0)
,其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為
3

(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1,l2是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱(chēng)圓心在原點(diǎn)O、半徑是
a2+b2
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(
2
,0)
,其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為
3

(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)過(guò)橢圓C的“準(zhǔn)圓”與y軸正半軸的交點(diǎn)P作直線(xiàn)l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),求l1,l2的方程;
(3)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求
AB
AD
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黃埔區(qū)一模 題型:解答題

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱(chēng)圓心在原點(diǎn)O、半徑是
a2+b2
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(
2
,0)
,其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為
3

(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1,l2是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市黃浦區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

給定橢圓C:,稱(chēng)圓心在原點(diǎn)O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為,其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1,l2是否垂直?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案