橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),點A為左頂點,點B為上頂點,直線AB的斜率為
3
2
,又直線y=k(x-1)經(jīng)過橢圓C的一個焦點且與其相交于點M,N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)將|MN|表示為k的函數(shù);
(Ⅲ)線段MN的垂直平分線與x軸相交于點P,又點Q(1,0),求證:
|PQ|
|MN|
為定值.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)由直線AB的斜率為
3
2
得到
b
a
=
3
2
,求直線經(jīng)過的定點得橢圓焦點,結(jié)合a2=b2+c2求得a2,b2的值,則橢圓方程可求;
(Ⅱ)聯(lián)立直線和橢圓方程,化為關(guān)于x的一元二次方程,由弦長公式得到|MN|關(guān)于k的函數(shù);
(Ⅲ)求出線段MN的垂直平分線方程,取y=0求得P點坐標(biāo),則|PQ|可求,直接作比得到
|PQ|
|MN|
為定值.
解答: (Ⅰ)解:如圖,

∵直線AB的斜率為
3
2
,
b
a
=
3
2
,
又直線y=k(x-1)經(jīng)過橢圓C的一個焦點,
∴交點F(1,0).
c=1
b
a
=
3
2
a2=b2+c2
,解得a2=4,b2=3.
∴橢圓C的方程為
x2
4
+
y2
3
=1

(Ⅱ)解:聯(lián)立
y=k(x-1)
x2
4
+
y2
3
=1
,得(3+4k2)x2-8k2x+4k2-12=0.
設(shè)M(x1,y1),N(x2,y2),
x1+x2=
8k2
3+4k2
,x1x2=
4k2-12
3+4k2

∴|MN|=
1+k2
(x1+x2)2-4x1x2

=
1+k2
(
8k2
3+4k2
)2-4•
4k2-12
3+4k2
=
12(1+k2)
3+4k2

(Ⅲ)證明:線段MN的中點的橫坐標(biāo)為
x1+x2
2
=
4k2
3+4k2
,縱坐標(biāo)為k•(
4k2
3+4k2
-1)=
-3k
3+4k2

∴線段MN的垂直平分線方程為y+
3k
3+4k2
=-
1
k
(x-
4k2
3+4k2
)
,
取y=0,得x=
k2
3+4k2
,
∴P(
k2
3+4k2
,0
),
則|PQ|=1-
k2
3+4k2
=
3(1+k2)
3+4k2

|PQ|
|MN|
=
3(1+k2)
3+4k2
12(1+k2)
3+4k2
=
1
4
為定值.
點評:本題主要考查橢圓方程的求法,考查了直線與橢圓的位置關(guān)系的應(yīng)用,直線與曲線聯(lián)立,根據(jù)方程的根與系數(shù)的關(guān)系解題,是處理這類問題的最為常用的方法,考查了弦長公式的應(yīng)用,訓(xùn)練了學(xué)生的運算能力,屬難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)fk(x)=
alnx
xk
為f(x)的k階函數(shù).
(1)求一階函數(shù)f1(x)的單調(diào)區(qū)間;
(2)討論方程f2(x)=1的解的個數(shù);
(3)求證:3lnn!≤1+23e+33e2+…+n3en-1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
i
 1- i 
(其中i為虛數(shù)單位)的模為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中周期為π且圖象關(guān)于直線x=
π
3
對稱的函數(shù)是(  )
A、y=2sin(
x
2
+
π
3
B、y=2sin(2x-
π
6
C、y=2sin(2x+
π
6
D、y=2sin(
x
2
-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出S的值是( 。
A、10B、17C、26D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=mx2+(m-3)x+1,對于任意實數(shù)x,恒有f(x)≤f(m)(m為常數(shù)),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將圓p:x2+y2=4上任意一點P′的縱坐標(biāo)變?yōu)樵瓉淼囊话?nbsp;(橫坐標(biāo)不變),得到點P,并設(shè)點P的軌跡為曲線C.
(1)求C的方程;
(2)設(shè)o為坐標(biāo)原點,過點Q(
3
,0)的直線l與曲線C交于兩點A,B,線段AB的中點為N,且
OE
=2
ON
,點E在曲線C上,求直線l:
x
a
+
y
b
=1
的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓4x2+y2=1及直線y=x+m.
(1)當(dāng)直線與橢圓有公共點時,求實數(shù)m的取值范圍.
(2)求被橢圓截得的最長弦的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

編寫一個程序框圖,求二元一次方程組
a1x+b1y=c1
a2x+b2y=c2
(a1b2-a2b1≠0)的解.

查看答案和解析>>

同步練習(xí)冊答案