袋中裝有大小相同的黑球、白球和紅球共10個(gè),已知從袋中任意摸出1個(gè)球,得到黑球的概率是
2
5
;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是
7
9

(1)求袋中各色球的個(gè)數(shù);
(2)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望E(ξ)和方差D(ξ);
(3)若η=aξ+b,Eη=11,Dη=21,試求出a,b的值.
分析:(1)由題意可得:黑球個(gè)數(shù)為=4,設(shè)白球的個(gè)數(shù)為y,所以可得:
C
2
y
+
C
1
y
C
1
10-y
C
2
10
=
7
9
進(jìn)而求出答案.
(2)由題設(shè)知ξ的所有取值是0,1,2,3,分別求出其發(fā)生的概率即可得到ξ的分布列,進(jìn)而得到期望與方差.
(3)根據(jù)題意可得:Eη=E(aξ+b)=aEξ+B,Dη=D(aξ+b)=a2Dξ,結(jié)合題意列方程組得:
3a
2
+b=11
7a2
12
=21
,即可求出a與b數(shù)值.
解答:解:(1)因?yàn)閺拇腥我饷?球得到黑球的概率是
2
5

設(shè)黑球個(gè)數(shù)為x,則:
x
10
=
2
5
解得:x=4…(1分)
設(shè)白球的個(gè)數(shù)為y,又從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是
7
9
,
則:
C
2
y
+
C
1
y
C
1
10-y
C
2
10
=
7
9
解得:y=5…(3分)
所以 袋中白球5個(gè),黑球4個(gè),紅球1個(gè)      …(4分)
(2)由題設(shè)知ξ的所有取值是0,1,2,3,則:P(ξ=0)=
C
3
5
C
3
10
=
1
12
P(ξ=1)=
C
1
5
C
2
5
C
3
10
=
5
12
P(ξ=2)=
C
2
5
C
1
5
C
3
10
=
5
12
P(ξ=3)=
C
3
5
C
3
10
=
1
12
…(6分)
分布列表為:
ξ 0 1 2 3
P
1
12
5
12
5
12
1
12
…(7分)
所以Eξ=
1
12
×0+
5
12
×1+
5
12
×2+
1
12
×3
=
3
2
,
所以Dξ=
1
2
×(0-
3
2
)
2
+
5
12
×(1-
3
2
)
2
+
5
12
×(2-
3
2
)
2
+
1
12
×(3-
3
2
)
2
=
7
12

(3)∵η=aξ+b
∴Eη=E(aξ+b)=aEξ+B,Dη=D(aξ+b)=a2Dξ  …(10分)
又 Eη=11,Dη=21
所以
3a
2
+b=11
7a2
12
=21
               …(12分)
解得:
a=6
b=2
a=-6
b=20

即:所求a,b的值為
a=6
b=2
a=-6
b=20
…(14分)
點(diǎn)評(píng):本題主要考查排列組合、概率等基礎(chǔ)知識(shí),同時(shí)考查對(duì)立事件的概率與古典概型等問(wèn)題,以及離散型隨機(jī)變量的期望與方差的公式,是一個(gè)綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)袋中裝有大小相同的黑球、白球和紅球,共有10個(gè)球,從袋中任意摸出1個(gè)球,得到黑球的概率是
25
,則從中任意摸出2個(gè)球,得到的都是黑球的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)袋中裝有大小相同的黑球、白球和紅球,已知袋中共有10個(gè)球,從中任意摸出1個(gè)球,得到黑球的概率是
2
5
;從中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是
7
9
.求:
(Ⅰ)從中任意摸出2個(gè)球,得到的數(shù)是黑球的概率;
(Ⅱ)袋中白球的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中裝有大小相同的黑球和白球共9個(gè),從中任取2個(gè)都是白球的概率為
512
.現(xiàn)甲、乙兩人從袋中輪流摸球,甲先取,乙后取,然后甲再取…,每次摸取1個(gè)球,取出的球部放回,直到其中有一人去的白球時(shí)終止.用X表示取球終止時(shí)取球的總次數(shù).
(1)求袋中原有白球的個(gè)數(shù);
(2)求隨機(jī)變量X的概率分布及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)一個(gè)袋中裝有大小相同的黑球、白球和紅球共10個(gè).已知從袋中任意摸出1個(gè)球,得到黑球的概率是
2
5
;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是
7
9
.從袋中任意摸出2個(gè)球,記得到白球的個(gè)數(shù)為ξ,則隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)袋中裝有大小相同的黑球和紅球,已知袋中共有5個(gè)球,從中任意摸出1個(gè)球,得到黑球的概率是
25
.現(xiàn)將黑球和紅球分別從數(shù)字1開(kāi)始順次編號(hào).
(Ⅰ)若從袋中有放回地取出兩個(gè)球,每次只取出一個(gè)球,求取出的兩個(gè)球上編號(hào)為相同數(shù)字的概率.
(Ⅱ)若從袋中取出兩個(gè)球,每次只取出一個(gè)球,并且取出的球不放回.求取出的兩個(gè)球上編號(hào)之積為奇數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案