(本題滿(mǎn)分14分)
已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線(xiàn)段中點(diǎn)的軌跡方程;
(3)過(guò)原點(diǎn)的直線(xiàn)交橢圓于點(diǎn),求面積的最大值。

(1)(2) (3)

解析試題分析:解:(1)由已知得橢圓的半長(zhǎng)軸a=2,半焦距c=,則半短軸b=1.
又橢圓的焦點(diǎn)在x軸上, ∴橢圓的標(biāo)準(zhǔn)方程為
(2)設(shè)線(xiàn)段PA的中點(diǎn)為M(x,y) ,點(diǎn)P的坐標(biāo)是(x0,y0),
   得
又點(diǎn)P在橢圓上,得,
∴線(xiàn)段PA中點(diǎn)M的軌跡方程是.
(3)當(dāng)直線(xiàn)BC垂直于x軸時(shí),BC=2,因此△ABC的面積S△ABC=1.
當(dāng)直線(xiàn)BC不垂直于x軸時(shí),設(shè)該直線(xiàn)方程為y=kx,代入,
解得B(,),C(-,-),
,又點(diǎn)A到直線(xiàn)BC的距離d=,
∴△ABC的面積S△ABC=
于是S△ABC=
≥-1,得S△ABC,其中,當(dāng)k=-時(shí),等號(hào)成立.
∴S△ABC的最大值是.
考點(diǎn):橢圓的方程以及直線(xiàn)與橢圓的位置關(guān)系
點(diǎn)評(píng):解決的關(guān)鍵是利用橢圓的性質(zhì)得到a,b,c的關(guān)系式,同時(shí)聯(lián)立方程組,結(jié)合韋達(dá)定理來(lái)表示軌跡方程,結(jié)合距離公式得到面積,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

雙曲線(xiàn)與橢圓有相同的焦點(diǎn),且該雙曲線(xiàn)
的漸近線(xiàn)方程為
(1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2) 過(guò)該雙曲線(xiàn)的右焦點(diǎn)作斜率不為零的直線(xiàn)與此雙曲線(xiàn)的左,右兩支分別交于點(diǎn)、,
設(shè),當(dāng)軸上的點(diǎn)滿(mǎn)足時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題共14分)
已知橢圓C:,左焦點(diǎn),且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線(xiàn)與橢圓C交于不同的兩點(diǎn)不是左、右頂點(diǎn)),且以為直徑的圓經(jīng)過(guò)橢圓C的右頂點(diǎn)A.   求證:直線(xiàn)過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿(mǎn)足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線(xiàn)交橢圓兩點(diǎn),交直線(xiàn)于點(diǎn).若,證明:的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿(mǎn)足,寫(xiě)出求作點(diǎn)、的步驟,并求出使存在的θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
設(shè)點(diǎn)到直線(xiàn)的距離與它到定點(diǎn)的距離之比為,并記點(diǎn)的軌跡為曲線(xiàn)
(Ⅰ)求曲線(xiàn)的方程;
(Ⅱ)設(shè),過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),當(dāng)線(xiàn)段的中點(diǎn)落在由四點(diǎn)構(gòu)成的四邊形內(nèi)(包括邊界)時(shí),求直線(xiàn)斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,以O(shè)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C1的極坐標(biāo)方程為,曲線(xiàn)的參數(shù)方程為,(為參數(shù),)。
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)當(dāng)C1與C2有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知橢圓)的離心率為,過(guò)右焦點(diǎn)且斜率為1的直線(xiàn)交橢圓兩點(diǎn),為弦的中點(diǎn)。
(1)求直線(xiàn)為坐標(biāo)原點(diǎn))的斜率;
(2)設(shè)橢圓上任意一點(diǎn),且,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分,(Ⅰ)小問(wèn)3分,(Ⅱ)小問(wèn)9分.)
直線(xiàn)稱(chēng)為橢圓的“特征直線(xiàn)”,若橢圓的離心率.(1)求橢圓的“特征直線(xiàn)”方程;
(2)過(guò)橢圓C上一點(diǎn)作圓的切線(xiàn),切點(diǎn)為PQ,直線(xiàn)PQ與橢圓的“特征直線(xiàn)”相交于點(diǎn)EF,O為坐標(biāo)原點(diǎn),若取值范圍恰為,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)
已知點(diǎn),,△的周長(zhǎng)為6.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)相交于不同的兩點(diǎn),.若點(diǎn)軸上,且,求點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案