分析 由拋物線的對稱性知A、B關于x軸對稱,設出它們的坐標,利用三角形的垂心的性質,結合斜率之積等于-1即可求得A、B的坐標,進一步求得三角形周長.
解答 解:如圖,
解:由拋物線的對稱性知,A、B關于x軸對稱.
設直線AB的方程是x=m,則A(m,-2$\sqrt{m}$)、B(m,2$\sqrt{m}$),
∵△AOB的垂心恰好是拋物線的焦點F(1,0 ),
∴AF⊥OB,KAF•KOB=-1,
∴$\frac{-2\sqrt{m}}{m-1}•\frac{2\sqrt{m}}{m}=-1$,解得m=5,
∴直線AB的方程是x=5,則A(5,-2$\sqrt{5}$),B(5,$2\sqrt{5}$),
則|OA|=|OB|=$\sqrt{{5}^{2}+(2\sqrt{5})^{2}}=3\sqrt{5}$,|AB|=4$\sqrt{5}$.
∴三角形的周長為$10\sqrt{5}$.
點評 本題考查拋物線的簡單性質,考查了兩直線垂直與斜率的關系,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,0] | B. | [2,8] | C. | [1,2] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (4,1) | B. | (1,4) | C. | (1,3) | D. | (-1,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com