已知m>1,直線
,橢圓C:
,
、
分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)
時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A
、△B
的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.
(Ⅰ)
.(Ⅱ)m的取值范圍是(1,2).
試題分析:(Ⅰ)因?yàn)橹本
經(jīng)過點(diǎn)
(
,0),
所以
=
,得
.又因?yàn)閙>1,所以
,
故直線的方程為
.
(Ⅱ)設(shè)
,由
,消去x,
得
,
則由
,知
<8,
且有
由
可知
,
由題意可知,
<0,
而
=(
)(
)
=
,
所以
<0,即
又因?yàn)閙>1且
>0,從而1<m<2,
故m的取值范圍是(1,2).
點(diǎn)評:典型題,涉及橢圓標(biāo)準(zhǔn)方程問題,要求熟練掌握a,b,c,e的關(guān)系,涉及直線與橢圓的位置關(guān)系,往往通過聯(lián)立方程組,得到一元二次方程,利用韋達(dá)定理實(shí)現(xiàn)整體代換。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題15分)已知點(diǎn)
是橢圓
E:
(
)上一點(diǎn),
F1、
F2分別是橢圓
E的左、右焦點(diǎn),
O是坐標(biāo)原點(diǎn),
PF1⊥
x軸.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A、B是橢圓E上兩個(gè)動(dòng)點(diǎn),
(
).求證:直線AB的斜率為定值;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)△PAB面積取得最大值時(shí),求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知拋物線C
1:y
2=4x的焦點(diǎn)與橢圓C
2:
的右焦點(diǎn)F
2重合,F(xiàn)
1是橢圓的左焦點(diǎn);
(Ⅰ)在
ABC中,若A(-4,0),B(0,-3),點(diǎn)C在拋物線y
2=4x上運(yùn)動(dòng),求
ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C
1與橢圓C
2的一個(gè)公共點(diǎn),且∠PF
1F
2=
,∠PF
2F
1=
,求cos
的值及
PF
1F
2的面積。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
為橢圓
的兩個(gè)焦點(diǎn),過
的直線交橢圓于
兩點(diǎn)。若
,則
=
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過拋物線y
2=2px(p>0)的焦點(diǎn)作傾斜角為30°的直線l與拋物線交于P,Q兩點(diǎn),分別作PP¢、QQ¢垂直于拋物線的準(zhǔn)線于P¢、Q¢,若|PQ|=2,則四邊形PP¢Q¢Q的面積為
A.1 | B.2 | C. | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,
為橢圓
上的一個(gè)動(dòng)點(diǎn),弦
、
分別過焦點(diǎn)
、,當(dāng)
垂直于
軸時(shí),恰好有
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)
.
①當(dāng)
點(diǎn)恰為橢圓短軸的一個(gè)端點(diǎn)時(shí),求
的值;
②當(dāng)
點(diǎn)為該橢圓上的一個(gè)動(dòng)點(diǎn)時(shí),試判斷
是否為定值?
若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)斜率為2的直線
l過雙曲線
的右焦 點(diǎn),且與雙曲線的左、右兩支分別相交,則雙曲線離心率e的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知直線
經(jīng)過橢圓
的焦點(diǎn)并且與橢圓相交于
,
兩點(diǎn),線段
的垂直平分線與
軸相交于點(diǎn)
,則
面積的最大值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知方程
表示焦點(diǎn)在y軸上的橢圓,則k的取值范圍是( )
查看答案和解析>>