已知m>1,直線,橢圓C:,分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.
(Ⅰ).(Ⅱ)m的取值范圍是(1,2).

試題分析:(Ⅰ)因為直線經(jīng)過點,0),
所以,得.又因為m>1,所以,
故直線的方程為.
(Ⅱ)設,由,消去x,
,
則由,知<8,
且有
可知,
由題意可知,<0,
=()(,
所以<0,即 
又因為m>1且>0,從而1<m<2,
故m的取值范圍是(1,2).
點評:典型題,涉及橢圓標準方程問題,要求熟練掌握a,b,c,e的關系,涉及直線與橢圓的位置關系,往往通過聯(lián)立方程組,得到一元二次方程,利用韋達定理實現(xiàn)整體代換。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題15分)已知點是橢圓E)上一點,F1、F2分別是橢圓E的左、右焦點,O是坐標原點,PF1x軸.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設A、B是橢圓E上兩個動點,).求證:直線AB的斜率為定值;
(Ⅲ)在(Ⅱ)的條件下,當△PAB面積取得最大值時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知拋物線C1:y2=4x的焦點與橢圓C2:的右焦點F2重合,F(xiàn)1是橢圓的左焦點;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知為橢圓的兩個焦點,過的直線交橢圓于兩點。若,則=          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線y2=2px(p>0)的焦點作傾斜角為30°的直線l與拋物線交于P,Q兩點,分別作PP¢、QQ¢垂直于拋物線的準線于P¢、Q¢,若|PQ|=2,則四邊形PP¢Q¢Q的面積為
A.1B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,為橢圓上的一個動點,弦分別過焦點、,當垂直于軸時,恰好有

(Ⅰ)求橢圓的離心率;
(Ⅱ)設.
①當點恰為橢圓短軸的一個端點時,求的值;
②當點為該橢圓上的一個動點時,試判斷是否為定值?
若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設斜率為2的直線l過雙曲線的右焦 點,且與雙曲線的左、右兩支分別相交,則雙曲線離心率e的取值范圍是(   )
A.e>B.e>C.1<e<D.1<e<

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線經(jīng)過橢圓的焦點并且與橢圓相交于,兩點,線段的垂直平分線與軸相交于點,則面積的最大值為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知方程 表示焦點在y軸上的橢圓,則k的取值范圍是(   )
A.6<k<9B.k>3C.k>9D.k<3

查看答案和解析>>

同步練習冊答案