函數(shù)y=cos(2x數(shù)學(xué)公式)定義域?yàn)閇a,b],值域?yàn)閇-數(shù)學(xué)公式],則b-a的最大值與最小值之和為


  1. A.
  2. B.
    π
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:根據(jù)a≤x≤b,可求得2x+的范圍,再結(jié)合其值域?yàn)閇-],可求得滿足題意的2x+的最大范圍與最小范圍,從而可求得b-a的最大值與最小值之和.
解答:∵a≤x≤b,
∴2a+≤2x+≤2b+,
又-≤cos(2x)≤1,
∴2kπ-≤2x+2kπ或2kπ≤2x+2kπ(k∈Z),
∴kπ-≤x≤+kπ或kπ-≤x≤+kπ(k∈Z),
∴(b-a)max=+=,(b-a)min=+=
∴(b-a)max+(b-a)min=π.
故選B.
點(diǎn)評(píng):本題考查復(fù)合三角函數(shù)的單調(diào)性,突出考查余弦函數(shù)的性質(zhì)與應(yīng)用,由題意求得滿足條件的2x+的最大范圍與最小范圍是關(guān)鍵,也是難點(diǎn),考查綜合分析與理解運(yùn)用的能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈[0,
π
3
],求函數(shù)y=cos(2x-
π
3
)+2sin(x-
π
6
)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的是

①函數(shù)y=cos(2x+
π
2
)+1
的圖象的一個(gè)對(duì)稱中心是(-
π
2
,0)
;
②要得到函數(shù)y=cos(-
π
3
+2x)
的圖象,只需將函數(shù)y=sin2x的圖象向左平移
π
12
個(gè)單位;
α=
π
4
+2kπ
是tanα=1的充要條件;
④函數(shù)y=sinx-
3
cosx  x∈[-π,0]
的單調(diào)遞增區(qū)間是[-
5
6
π, -
π
6
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=sin2x的圖象,只需要將函數(shù)y=cos(2x-
π
3
)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①當(dāng)α=4.5π時(shí),函數(shù)y=cos(2x+α)是奇函數(shù);
②函數(shù)y=sinx在第一象限內(nèi)是增函數(shù);
③函數(shù)f(x)=sin2x-(
2
3
)|x|+
1
2
的最小值是-
1
2
;
④存在實(shí)數(shù)α,使sinα•cosα=1;
⑤函數(shù)y=
3
sinωx+cosωx(ω>0)
的圖象關(guān)于直線x=
π
12
對(duì)稱?ω=4k(k∈N*).
其中正確的命題序號(hào)是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(2x-
6
),在區(qū)間[-
π
2
,π]上的簡圖是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案