已知橢圓上有n個不同的點P1、P2、……、Pn, 其中點, 橢圓的右焦點為F, 記, 數(shù)列{an}構(gòu)成以d為公差的等差數(shù)列, .

(1)若, 求點P3的坐標;

(2)若公差d為常數(shù)且, 求n的最大值;

(3)對于給定的正整數(shù), 當公差d變化時, 求Sn的最大值.

解析:對于橢圓, 有, 所以, 右準線

設(shè), 于是由定義知, 即…………………2分

(1)∵, 所以

,

                                                                                       ……………………4分

(2)由橢圓范圍可知, ∴

  ∵是等差數(shù)列,

, ∴, 即的最大值為200……………………9分

(3)由(2)知, , ∴, ∴

  由, ∵, ∴是關(guān)于的增函數(shù)

  ∴的最大值為……………………14分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
4
+
y2
3
=1上有n個不同的點P1,P2,P3,…,Pn.設(shè)橢圓的右焦點為F,數(shù)列{|PnF|}是公差大于
1
1003
的等差數(shù)列,則n的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2007年安徽省自主命題高考仿真卷(1)文科數(shù)學 題型:013

已知橢圓上有n個不同的點P1,P2P3,…,Pn.設(shè)橢圓的右焦點為F,數(shù)列{|PnF|}是公差不小于的等差數(shù)列,則n的最大值為

[  ]

A.2006

B.2007

C.2008

D.1004

查看答案和解析>>

科目:高中數(shù)學 來源:2006年江蘇省南京市金陵中學高考數(shù)學三模試卷(解析版) 題型:選擇題

已知橢圓+=1上有n個不同的點P1,P2,P3,…,Pn.設(shè)橢圓的右焦點為F,數(shù)列{|PnF|}是公差大于的等差數(shù)列,則n的最大值為( )
A.2007
B.2006
C.1004
D.1003

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓+=1上有n個不同的P1,P2,P3,……Pn,設(shè)橢圓的右焦點為F,數(shù)列{|FPn|}的公差不小于的等差數(shù)列,則n的最大值為      

查看答案和解析>>

同步練習冊答案