若函數(shù)f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲線(xiàn)過(guò)原點(diǎn),且在x=±1處的切線(xiàn)的斜率為-1,有以下命題:
(1)f(x)的解析式為:f(x)=x3-4x,x∈[-2,2]
(2)f(x)的極值點(diǎn)有且僅有一個(gè)
(3)f(x)的最大值與最小值之和等于零
其中假命題個(gè)數(shù)為( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)
分析:首先利用導(dǎo)數(shù)的幾何意義及函數(shù)f(x)過(guò)原點(diǎn),列方程組求出f(x)的解析式;然后根據(jù)奇函數(shù)的定義判斷函數(shù)f(x)的奇偶性,且由f′(x)的最小值求出k的最大值,則命題(1),(3)得出判斷;最后令f′(x)=0,求出f(x)的極值點(diǎn),進(jìn)而求得f(x)的單調(diào)區(qū)間與最值,則命題(2)得出判斷.
解答:解:函數(shù)f(x)=x3+ax2+bx+c的圖象過(guò)原點(diǎn),可得c=0;
又f′(x)=3x2+2ax+b,且f(x)在x=±1處的切線(xiàn)斜率均為-1,
則有
3+2a+b=-1
3-2a+b=-1
,解得a=0,b=-4.
所以f(x)=x3-4x,f′(x)=3x2-4.
(1)可見(jiàn)f(x)=x3-4x,因此(1)正確;
(2)令f′(x)=0,得x=±
2
3
3
.因此(2)不正確;
所以f(x)在[-
2
3
3
,
2
3
3
]內(nèi)遞減,
(3)f(x)的極大值為f(-
2
3
3
)=
16
3
9
,極小值為f(
2
3
3
)=-
16
3
9
,兩端點(diǎn)處f(-2)=f(2)=0,
所以f(x)的最大值為M=
16
3
9
,最小值為m=-
16
3
9
,則M+m=0,因此(3)正確.
故選B.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x3+
1
x
,則
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x3+3x-1,x∈[-1,l],則下列判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x3+3mx2+nx+m2為奇函數(shù),則實(shí)數(shù)m的值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,則b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值,最小值分別為M,m,則M+m=
-14
-14

查看答案和解析>>

同步練習(xí)冊(cè)答案