(2013•門頭溝區(qū)一模)點P是以F1,F(xiàn)2為焦點的橢圓上的一點,過焦點F2作∠F1PF2的外角平分線的垂線,垂足為M點,則點M的軌跡是(  )
分析:P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,延長F2M交F1延長線于Q,可證得PQ=PF2,且M是PF2的中點,由此可求得OM的長度是定值,即可求點M的軌跡的幾何特征.
解答:解:由題意,P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,延長F2M交F1延長線于Q,得PQ=PF2,
由橢圓的定義知PF1+PF2=2a,故有PF1+PQ=QF1=2a,
連接OM,知OM是三角形F1F2Q的中位線
∴OM=a,即點M到原點的距離是定值,由此知點M的軌跡是圓
故選D.
點評:本題考查求軌跡方程,關鍵是證出OM是中位線以及利用題設中所給的圖形的幾何特征求出QF1的長度,進而求出OM的長度,再利用圓的定義得出點M的軌跡是一個圓.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)為得到函數(shù)y=sin(π-2x)的圖象,可以將函數(shù)y=sin(2x-
π
3
)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“等比函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù):
①f(x)=2x;
②f(x)=log2|x|;
③f(x)=x2;
④f(x)=ln2x,
則其中是“等比函數(shù)”的f(x)的序號為
③④
③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)已知數(shù)列{An}的前n項和為Sn,a1=1,滿足下列條件
①?n∈N*,an≠0;
②點Pn(an,Sn)在函數(shù)f(x)=
x2+x2
的圖象上;
(I)求數(shù)列{an}的通項an及前n項和Sn;
(II)求證:0≤|Pn+1Pn+2|-|PnPn+1|<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)如圖已知平面α,β,且α∩β=AB,PC⊥α,PD⊥β,C,D是垂足.
(Ⅰ)求證:AB⊥平面PCD;
(Ⅱ)若PC=PD=1,CD=
2
,試判斷平面α與平面β的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)已知函數(shù)f(x)=
2,        x≥0
x2+4x+2,  x<0
的圖象與直線y=k(x+2)-2恰有三個公共點,則實數(shù)k的取值范圍是( 。

查看答案和解析>>

同步練習冊答案