設(shè)函數(shù)f(x)=x|x-a|,若對(duì)于任意的x1,x2∈[2,+∞),x1≠x2,不等式
f(x1)-f(x2)x1-x2
>0恒成立,則實(shí)數(shù)a的取值范圍是
(-∞,2]
(-∞,2]
分析:首先由函數(shù)單調(diào)性定義,判斷f(x)=x|x-a|在[2,+∞)上單調(diào)遞增;然后把a(bǔ)分成a≤2與a>2兩種情況分別進(jìn)行檢驗(yàn),從而得出結(jié)論.
解答:解:∵函數(shù)f(x)=x|x-a|=
x(x-a) , x≥a
x(a-x) , x<a
,對(duì)于任意的x1,x2∈[2,+∞),x1≠x2,不等式
f(x1)-f(x2)
x1-x2
>0恒成立,
故函數(shù)在[2,+∞)上是增函數(shù).
(1)當(dāng)a≤2時(shí),
若x∈[2,+∞),則f(x)=x(x-a)=x2-ax,其對(duì)稱軸為x=
a
2
,此時(shí)
a
2
<2,所以,f(x)在[2,+∞)上是遞增的.
(2)當(dāng)a>2時(shí),
①若x∈[a,+∞),則f(x)=x(x-a)=x2-ax,由于其對(duì)稱軸為x=
a
2
,所以f(x)在[a,+∞)上是遞增的;
②若x∈[2,a),則f(x)=x(a-x)=-x2+ax,其對(duì)稱軸為x=
a
2
,所以f(x)在[
a
2
,a)上是遞減的,
因此f(x)在[2,a)上必有遞減區(qū)間,故不滿足條件.
綜合(1)、(2)可知a≤2,
故答案為 (-∞,2].
點(diǎn)評(píng):本題考查了函數(shù)單調(diào)性的定義,同時(shí)考查了分類討論的思想方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對(duì)于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域?yàn)閇0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是( 。
A、[-5,5]
B、[-
5
5
]
C、[-
10
,
10
]
D、[-
5
2
,
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案