分析:(1)利用
an=及其等差數(shù)列的通項(xiàng)公式即可得出;
(2)利用(1)得出當(dāng)n≥2時,
,
的表達(dá)式,相減即可得出;
(3)當(dāng)n≥2時,
=,可得
=.利用(2)及“累乘求積”、“放縮法”、“裂項(xiàng)求和”即可得出.
解答:解:(1)∵
S1=,∴a
1=1,)
又由
S2=,∴a
2=2,
又當(dāng)n≥2時,
Sn=,
Sn-1=,
兩式相減得
an=∴a
n+a
n-1=2n-1(n≥2)
又a
n+1+a
n=2n+1(n≥1),兩式相減得a
n+1-a
n-1=2(n≥2)
即數(shù)列{a
n}的奇數(shù)項(xiàng)是首項(xiàng)為1,公差為2等差數(shù)列;
偶數(shù)項(xiàng)是首項(xiàng)為2,公差為2等差數(shù)列.
∴a
2n-1=2n-1,a
2n=2n
∴a
n=n.
(2)當(dāng)n≥2時,
=++…+①
=++…+②
由②-①得
-=.
(3)當(dāng)n=1時,
1+=1+1=2<4,當(dāng)n=2時,
b2=a22•=4∴
(1+1)(1+)=2×=<4當(dāng)n≥2時,
=,∴
=當(dāng)n≥3時,
(1+)(1+)…(1+)=
••…•=
2•••…•••bn+1=
2××××…××bn+1=
2•=
2••(++…+)≤2(+++…+)=
4-<4.
點(diǎn)評:熟練掌握利用
an=及其等差數(shù)列的通項(xiàng)公式求a
n、變形利用“累乘求積”、“放縮法”、“裂項(xiàng)求和”等方法是解題的關(guān)鍵.