如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分.曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn)且∠AF2F1為鈍角,若|AF1|=,|AF2|=.
(1)求曲線C1和C2的方程;
(2)設(shè)點(diǎn)C是C2上一點(diǎn),若|CF1|=|CF2|,求△CF1F2的面積.
(1)曲線C1的方程為+=1(-3≤x≤),曲線C2的方程為y2=4x(0≤x≤)
(2)2
【解析】(1)設(shè)橢圓方程為+=1(a>b>0),則2a=|AF1|+|AF2|=+=6,得a=3.
設(shè)A(x,y),F(xiàn)1(-c,0),F(xiàn)2(c,0),則(x+c)2+y2=()2,(x-c)2+y2=()2,兩式相減得xc=.由拋物線的定義可知|AF2|=x+c=,
則c=1,x=或x=1,c=.又∠AF2F1為鈍角,
則x=1,c=不合題意,舍去.當(dāng)c=1時(shí),b=2,
所以曲線C1的方程為+=1(-3≤x≤),曲線C2的方程為y2=4x(0≤x≤).
(2)過點(diǎn)F1作直線l垂直于x軸,過點(diǎn)C作CC1⊥l于點(diǎn)C1,依題意知|CC1|=|CF2|.
在Rt△CC1F1中,|CF1|=|CF2|=|CC1|,所以∠C1CF1=45°,
所以∠CF1F2=∠C1CF1=45°.
在△CF1F2中,設(shè)|CF2|=r,則|CF1|=r,|F1F2|=2.
由余弦定理得22+(r)2-2×2×rcos45°=r2,
解得r=2,
所以△CF1F2的面積S△CF1F2=|F1F2|·|CF1|sin45°=×2×2sin45°=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):選4-1-1相似三角形判定及性質(zhì)(解析版) 題型:解答題
如圖所示,已知,在邊長(zhǎng)為1的正方形ABCD的一邊上取一點(diǎn)E,使AE=AD,從AB的中點(diǎn)F作HF⊥EC于H.
(1)求證:FH=FA;
(2)求EH∶HC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):9-1隨機(jī)抽樣(解析版) 題型:填空題
一個(gè)總體中的1000個(gè)個(gè)體編號(hào)為0,1,2,…,999,并依次將其分為10個(gè)小組,組號(hào)為0,1,2,…,9,要用系統(tǒng)抽樣的方法抽取一個(gè)容量為10的樣本,規(guī)定若在第0組隨機(jī)抽取的號(hào)碼為x,則第k組中抽取的號(hào)碼的后兩位數(shù)為x+33k的后兩位數(shù).當(dāng)x=24時(shí),所抽取樣本的10個(gè)號(hào)碼是________,若所抽取樣本的10個(gè)號(hào)碼中有一個(gè)的后兩位數(shù)是87,則x的取值集合是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-9圓錐曲線的綜合問題(解析版) 題型:解答題
橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,兩焦點(diǎn)F1,F(xiàn)2之間的距離為2,橢圓上第一象限內(nèi)的點(diǎn)P滿足PF1⊥PF2,且△PF1F2的面積為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C的右頂點(diǎn)為A,直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點(diǎn)M,N,且滿足AM⊥AN.求證:直線l過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-9圓錐曲線的綜合問題(解析版) 題型:選擇題
若雙曲線-=1(a>0,b>0)上不存在點(diǎn)P,使得右焦點(diǎn)F關(guān)于直線OP(O為雙曲線的中心)的對(duì)稱點(diǎn)在y軸上,則該雙曲線離心率的取值范圍為( )
A.(,+∞) B.[,+∞)
C.(1,] D.(1,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-8曲線與方程(解析版) 題型:解答題
已知點(diǎn)C(1,0),點(diǎn)A、B是⊙O:x2+y2=9上任意兩個(gè)不同的點(diǎn),且滿足·=0,設(shè)P為弦AB的中點(diǎn).
(1)求點(diǎn)P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點(diǎn):它到直線x=-1的距離恰好等于到點(diǎn)C的距離?若存在,求出這樣的點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-8曲線與方程(解析版) 題型:選擇題
設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點(diǎn),Q為圓周上任一點(diǎn).線段AQ的垂直平分線與CQ的連線交于點(diǎn)M,則M的軌跡方程為( )
A.-=1 B.+=1
C.-=1 D.+=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-7拋物線(解析版) 題型:選擇題
已知F是拋物線y2=x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),|AF|+|BF|=3,則線段AB的中點(diǎn)到y(tǒng)軸的距離為( )
A. B. C. D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:填空題
已知直線l:x-y+4=0與圓C:(x-1)2+(y-1)2=2,則圓C上各點(diǎn)到l距離的最小值為________,最大值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com