本小題滿分13分)
如圖,A地到火車站共有兩條路徑 和 ,據(jù)統(tǒng)計(jì),通過(guò)兩條路徑所用的時(shí)間互不影響,所用時(shí)間落在各時(shí)間段內(nèi)的頻率如下表:
時(shí)間(分鐘) | |||||
的頻率 | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
的頻率 | 0 | 0.1 | 0.4 | 0.4 | 0.1 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分13分)
如圖,在以點(diǎn)O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點(diǎn),
∠POB=30°,曲線C是滿足||MA|-|MB||為定值的動(dòng)點(diǎn)M的軌跡,且曲線C過(guò)點(diǎn)P。
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)D的直線l與曲線C相交于不同的兩點(diǎn)E、F。若△OEF的面積不小于2,求直線l斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009安徽卷文)(本小題滿分13分)
如圖,ABCD的邊長(zhǎng)為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個(gè)不同點(diǎn),且EA=ED,F(xiàn)B=FC, 和是平面ABCD內(nèi)的兩點(diǎn),和都與平面ABCD垂直,
(Ⅰ)證明:直線垂直且平分線段AD:.
(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面
體ABCDEF的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江西省新余一中 宜春中學(xué) 高安中學(xué)高二上學(xué)期第三次階段考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本小題滿分13分)
如圖,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)是2,D是側(cè)棱CC1的中點(diǎn),直線AD與側(cè)面BB1C1C所成的角為45°.
(1)求此正三棱柱的側(cè)棱長(zhǎng);
(2)求平面ABD與平面CBD夾角的余弦;
(3)求點(diǎn)C到平面ABD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江西省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)如圖(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分別為AC ,AD ,DE的中點(diǎn),現(xiàn)將△ACD沿CD折起,使平面ACD平面CBED,如圖(乙).
(1)求證:平面FHG//平面ABE;
(2)記表示三棱錐B-ACE 的體積,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-AB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆山東省高二下學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
如圖,過(guò)拋物線(>0)的頂點(diǎn)作兩條互相垂直的弦OA、OB。
⑴設(shè)OA的斜率為k,試用k表示點(diǎn)A、B的坐標(biāo);
⑵求弦AB中點(diǎn)M的軌跡方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com