【題目】如圖,一條河的兩岸平行,河的寬度d=600m,一艘客船從碼頭A出發(fā)勻速駛往河對岸的碼頭B.已知|AB|=1km,水流速度為2km/h, 若客船行駛完航程所用最短時間為6分鐘,則客船在靜水中的速度大小為( )
A.8km/h
B.km/h
C.km/h
D.10km/h
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設c=(0,1),若 + =c,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩城相距,在兩城之間距城處建一核電站給兩城供電,為保證城市安全,核電站距城市距離不得小于 .已知供電費用等于供電距離的平方與供電量(億度)之積的倍,若城供電量為每月20億度,城供電量為每月10億度.
(1)把月供電總費用表示成的函數(shù);
(2)核電站建在距城多遠,才能使供電總費用最少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司研發(fā)出一款新產(chǎn)品,批量生產(chǎn)前先同時在甲、乙兩城市銷售30天進行市場調(diào)查.調(diào)查結果發(fā)現(xiàn):甲城市的日銷售量 與天數(shù)的對應關系服從圖①所示的函數(shù)關系;乙城市的日銷售量與天數(shù)的對應關系服從圖②所示的函數(shù)關系;每件產(chǎn)品的銷售利潤與天數(shù)的對應關系服從圖③所示的函數(shù)關系,圖①是拋物線的一部分.
圖①,圖②,圖③
(1)設該產(chǎn)品的銷售時間為,日銷售利潤為,求的解析式;
(2)若在30天的銷售中,日銷售利潤至少有一天超過2萬元,則可以投入批量生產(chǎn),該產(chǎn)品是否可以投入批量生產(chǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.設H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(其中max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A﹣B=( )
A.a2﹣2a﹣16
B.a2+2a﹣16
C.﹣16
D.16
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列說法: ①線性回歸分析就是由樣本點去尋找一條直線,使之貼近這些樣本點的數(shù)學方法;②利用樣本點的散點圖可以直觀判斷兩個變量的關系是否可以用線性關系表示;③通過回歸方程 ,可以估計和觀測變量的取值和變化趨勢;④因為由任何一組觀測值都可以求得一個線性回歸方程,所以沒有必要進行相關性檢驗.其中正確命題的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海上某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為12海里;在A處看燈塔C在貨輪的北偏西30°,距離為8海里;貨輪向正北由A處行駛到D處時看燈塔B在貨輪的北偏東120°.(要畫圖)
(1)A處與D處之間的距離;
(2)燈塔C與D處之間的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 函數(shù)f(x)=x3+(m﹣4)x2﹣3mx+(n﹣6)x∈R的圖象關于原點對稱,其中m,n為實常數(shù).
(1)求m,n的值;
(2)試用單調(diào)性的定義證明:f(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù);
(3)當﹣2≤x≤2 時,不等式f(x)≥(n﹣logma)logma恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),且對任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),則實數(shù)a的取值范圍是( )
A.[3,+∞)
B.(0,3]
C.[ ,3]
D.(0, ]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com