9.已知$\overrightarrow{a}$=(-3,2,5),$\overrightarrow$=(1,x,-1),且$\overrightarrow{a}$•$\overrightarrow$=4,則x=6.

分析 根據(jù)空間向量的數(shù)量積公式列方程解出x.

解答 解:$\overrightarrow{a}•\overrightarrow$=-3+2x-5=4,解得x=6.
故答案為:6.

點評 本題考查了空間向量的數(shù)量積運算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.  已知函數(shù)f(x)=ax3+bx2+cx在點x0處取得極大值5,其導函數(shù)y=f'(x)的圖象如圖所示,且經(jīng)過點(1,0),(2,0).
(1)求x0的值以及f(x)的解析式;
(2)若方程f(x)-m=0恰有2個根,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,sin2B=2sinAsinC,且a>c,cosB=$\frac{1}{4}$,則$\frac{c}{a}$=( 。
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.角α的終邊過點P(4,-3),則cosα的值為(  )
A.4B.-3C.$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設有一個回歸方程$\widehaty=3-5x$,變量x增加一個單位時,y平均增加5個單位
③線性回歸方程$\widehaty=\widehatbx+\widehata$必過$(\overline x,\overline y)$;
④在一個2×2列聯(lián)表中,由計算得K2=13.079,則有99.9%的把握確認這兩個變量間有關系.
其中錯誤的個數(shù)是( 。
本題可以參考獨立性檢驗臨界值表
P(K2≥k)0.500.400.250.150.100.050.0250.010.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合A={x|0<x<5,x∈Z},B={y|y=3n-2,n∈A},則A∩B=( 。
A.{1}B.{4}C.{1,3}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某公司生產(chǎn)A、B兩種產(chǎn)品,且產(chǎn)品的質量用質量指標來衡量,質量指標越大表明產(chǎn)品質量越好.現(xiàn)按質量指標劃分:質量指標大于或等于82為一等品,質量指標小于82為二等品.現(xiàn)隨機抽取這兩種產(chǎn)品各100件進行檢測,檢測結果統(tǒng)計如表:
測試指標[70,76)[76,82)[82,88)[88,94)[94,100]
產(chǎn)品A81240328
產(chǎn)品B71840296
(Ⅰ)請估計A產(chǎn)品的一等獎;
(Ⅱ)已知每件A產(chǎn)品的利潤y(單位:元)與質量指標值x的關系式為:$y=\left\{\begin{array}{l}-10,x<76\\ 5,76≤x<88\\ 60,x≥88\end{array}\right.$,已知每件B產(chǎn)品的利潤y(單位:元)與質量指標值x的關系式為:$y=\left\{\begin{array}{l}-20,x<76\\ 10,76≤x<88\\ 80,x≥88.\end{array}\right.$
(i)分別估計生產(chǎn)一件A產(chǎn)品,一件B產(chǎn)品的利潤大于0的概率;
(ii)請問生產(chǎn)A產(chǎn)品,B產(chǎn)品各100件,哪一種產(chǎn)品的平均利潤比較高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知a>0,b>0,a2+b2-6a=0,則ab的最大值為( 。
A.$\frac{{27\sqrt{3}}}{4}$B.9C.$\frac{81}{4}$D.$\frac{27}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}滿足:a1+2a2+…+nan=4-$\frac{n+2}{{{2^{n-1}}}},n∈{N^*}$.
(1)求數(shù)列{an}的通項公式;
(2)若bn=(3n-2)an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案