在數(shù)列{an}中,滿足 a1=1,an+1=3an,則an=   
【答案】分析:根據(jù)數(shù)列連續(xù)兩項之比等于常數(shù),得到數(shù)列是一個等比數(shù)列,根據(jù)首項和公比寫出數(shù)列的通項.
解答:解:∵an+1=3an
=3,
∴數(shù)列是一個等比數(shù)列,
∴an=3n-1
故答案為:3n-1
點評:本題考查等比數(shù)列的通項公式,是一個基礎(chǔ)題,解題的關(guān)鍵是看出數(shù)列是一個特殊的數(shù)列,即符合等比數(shù)列的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,滿足a1=1,an+1=3an,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a,(a≠0x∈R),有且僅有唯一的實數(shù)x值滿足f(x)≤0的實數(shù)x值滿足f(x)≤0.
(1)在數(shù)列{an}中,滿足Sn=f(n)-4,求{an}的通項;
(2)在數(shù)列{an}中依次取出第1項、第2項、第4項…第2n-1項…組成新數(shù)列{bn},求新數(shù)列{bn}的前n項和Tn
(3)(理科)設(shè)數(shù)列{cn}滿足cn+cn+1=2n+3,c1=1,數(shù)列{cn}的前n項和記作Hn,試比較Hn與題(1)中Sn的大小.
(4)(文科)設(shè)cn=
nanan+1
,求數(shù)列{cn}
的最大和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a,(a≠0x∈R),有且僅有唯一的實數(shù)x滿足f(x)≤0.
(1)在數(shù)列{an}中,滿足Sn=f(n)-4,求{an}的通項;
(2)在數(shù)列{an}中依次取出第1項、第2項、第4項、…第2n-1項…組成新數(shù)列{bn},求新數(shù)列的前n項和Tn;
(3)設(shè)cn=
nanan+1
,求數(shù)列{cn}的最大和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=x2-ax+a,(a≠0x∈R),有且僅有唯一的實數(shù)x滿足f(x)≤0.
(1)在數(shù)列{an}中,滿足Sn=f(n)-4,求{an}的通項;
(2)在數(shù)列{an}中依次取出第1項、第2項、第4項、…第2n-1項…組成新數(shù)列{bn},求新數(shù)列的前n項和Tn;
(3)設(shè)數(shù)學(xué)公式,求數(shù)列{cn}的最大和最小值.

查看答案和解析>>

同步練習(xí)冊答案