17.如圖,橢圓C:x2+3y2=3b2(b>0)
(Ⅰ)若長軸長與短軸長的差為4$\sqrt{3}$-4,求橢圓方程
(Ⅱ)若b=1,A,B是橢圓C上的兩點(diǎn),且|AB|=$\sqrt{3}$,求△AOB面積的最大值.

分析 (Ⅰ)化橢圓方程為標(biāo)準(zhǔn)方程,求出長軸長與短軸長,結(jié)合已知求得b,則橢圓方程可求;
(Ⅱ)分AB所在直線的斜率存在和不存在討論,當(dāng)斜率存在時,直接求出面積;當(dāng)斜率不垂直時,設(shè)出直線方程,代入橢圓方程,利用韋達(dá)定理,表示出面積,利用配方法可求最值,從而可得結(jié)論.

解答 解:(Ⅰ)由x2+3y2=3b2 ,得$\frac{{x}^{2}}{3^{2}}+\frac{{y}^{2}}{^{2}}=1$,
∴橢圓的長軸長為$2\sqrt{3}b$,短軸長為2b,
∴$2\sqrt{3}b-2b=4\sqrt{3}-4$,
則b=2,a=$4\sqrt{3}$,
∴橢圓C的方程為$\frac{{x}^{2}}{48}+\frac{{y}^{2}}{4}=1$;
(Ⅱ)當(dāng)b=1時,橢圓方程為$\frac{{x}^{2}}{3}+{y}^{2}=1$.
設(shè)A(x1,y1),B(x2,y2),△ABO的面積為S.
如果AB⊥x軸,由對稱性不妨記A的坐標(biāo)為($\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2}$),此時S=$\frac{1}{2}$•$\frac{\sqrt{3}}{2}•\sqrt{3}=\frac{3}{4}$;
如果AB不垂直于x軸,設(shè)直線AB的方程為y=kx+m,
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$,得(1+3k2)x2+6kmx+3m2-3=0,
由△=36k2m2-4(1+3k2)(3m2-3)=48-12m2>0,
得-2<m<2.
x1+x2=-$\frac{6km}{1+3{k}^{2}}$,x1x2=$\frac{3{m}^{2}-3}{1+3{k}^{2}}$,
∴(x1-x22=(x1+x22-4x1x2=$(-\frac{6km}{1+3{k}^{2}})^{2}-4×\frac{3{m}^{2}-3}{1+3{k}^{2}}=\frac{12(1+3{k}^{2}-{m}^{2})}{(1+3{k}^{2})^{2}}$,①
由|AB|=$\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|$=$\sqrt{1+{k}^{2}}•\sqrt{({x}_{1}-{x}_{2})^{2}}$=$\sqrt{3}$,得(x1-x22=$\frac{3}{1+{k}^{2}}$,②
結(jié)合①,②得m2=(1+3k2)-$\frac{(1+3{k}^{2})^{2}}{4(1+{k}^{2})}$.
又原點(diǎn)O到直線AB的距離為$\frac{|m|}{\sqrt{1+{k}^{2}}}$,
∴S=$\frac{1}{2}$•$\frac{|m|}{\sqrt{1+{k}^{2}}}$•$\sqrt{3}$,
因此S2=-$\frac{3}{16}$$(\frac{1+3{k}^{2}}{1+{k}^{2}}-2)^{2}$+$\frac{3}{4}$≤$\frac{3}{4}$,
故S≤$\frac{\sqrt{3}}{2}$,當(dāng)且僅當(dāng)$\frac{1+3{k}^{2}}{1+{k}^{2}}$=2,即k=±1時上式取等號.
又$\frac{\sqrt{3}}{2}>\frac{3}{4}$,故Smax=$\frac{\sqrt{3}}{2}$.

點(diǎn)評 本題考查橢圓的幾何性質(zhì),考查三角形面積的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知O為坐標(biāo)原點(diǎn),拋物線C:y2=nx(n>0)在第一象限內(nèi)的點(diǎn)P(1,t)到焦點(diǎn)的距離為2,曲線C在點(diǎn)P處的切線交x軸于點(diǎn)Q,直線l1經(jīng)過點(diǎn)Q且垂直于x軸.
(Ⅰ)求線段OQ的長;
(Ⅱ)設(shè)不經(jīng)過點(diǎn)P和Q的動直線l2:x=my+b交曲線C于點(diǎn)A和B,交l1于點(diǎn)E,若直線PA,PE,PB的斜率依次成等差數(shù)列,試問:l2是否過定點(diǎn)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知A,D分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左頂點(diǎn)和上頂點(diǎn),點(diǎn)P是線段AD上的任意一點(diǎn),點(diǎn)F1,F(xiàn)2分別是橢圓的左,右焦點(diǎn),且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,最小值是-$\frac{11}{5}$,則橢圓的標(biāo)準(zhǔn)方程為( 。
A.x2+$\frac{{y}^{2}}{2}$=1B.x2+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{2}$+y2=1D.$\frac{{x}^{2}}{4}$+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C1:x2+y2+6x=0關(guān)于直線l1:y=2x+1對稱的圓為C
(1)求圓C的方程;
(2)過點(diǎn)(-1,0)作直線與圓C交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得在平行四邊形OASB中|$\overrightarrow{OS}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,α-MN-β為120°,O∈MN,a∈β,B∈α.∠BON=∠AOM=45°,$OA=OB=\sqrt{2}$,則AB=( 。
A.$\sqrt{5}$B.$2\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,某開發(fā)區(qū)內(nèi)新建兩棟樓AB,CD(A,C為水平地面),已知樓AB的高度為10m,兩樓間的距離AC為70m.
(1)若在AC上距離樓AB30m的點(diǎn)P處測得兩樓的張角∠BPD=135°,求樓CD的高度;
(2)若樓CD的高度為20米,試在AC上確定一點(diǎn)P,使得張角∠BPD最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=log2x-2-x,g(x)=log${\;}_{\frac{1}{2}}$x-2x的零點(diǎn)分別為x1,x2,則下列結(jié)論正確的是(  )
A.0<x1x2<1B.x1x2=1C.1<x1x2<2D.x1x2≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)O為坐標(biāo)原點(diǎn),直線l:x-y+m=0與圓C:x2-2x+y2-7=0交于M,N兩點(diǎn),與x軸,y軸交于A,B兩點(diǎn),且$\sqrt{3}$|$\overrightarrow{MN}$|=3|$\overrightarrow{OM}$+$\overrightarrow{ON}$|,點(diǎn)P在直線l上,滿足$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,若$\overrightarrow{PO}$•$\overrightarrow{PC}$=3,則λ的值為4±$\sqrt{17}$或-3$±\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某景區(qū)客棧的工作人員為了控制經(jīng)營成本,減少浪費(fèi),合理安排入住游客的用餐,他們通過統(tǒng)計每個月入住的游客人數(shù),發(fā)現(xiàn)每年各個月份來客棧入住的游客人數(shù)會發(fā)生周期性的變化,并且有以下規(guī)律:
①每年相同的月份,入住客棧的游客人數(shù)基本相同;
②入住客棧的游客人數(shù)在2月份最少,在8月份最多,相差約400人;
③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)若入住客棧的游客人數(shù)y與月份x之間的關(guān)系可用函數(shù)y=Asin(ωx+φ)+b(A>0,ω>0,0<|φ|<π)近似描述,求該函數(shù)解析式.
(2)請問哪幾個月份要準(zhǔn)備不少于400人的用餐?

查看答案和解析>>

同步練習(xí)冊答案